Compositional Design Methodology with Constraint Markov Chains

Notions of specification, implementation, satisfaction, and refinement, together with operators supporting stepwise design, constitute a {specification theory}. We construct such a theory for Markov Chains (MCs) employing a new abstraction of a Constraint MC. Constraint MCs permit rich constraints on probability distributions and thus generalize prior abstractions such as Interval MCs. Linear (polynomial) constraints suffice for closure under conjunction (respectively parallel composition). This is the first specification theory for MCs with such closure properties. We discuss its relation to simpler operators for known languages such as probabilistic process algebra. Despite the generality, all operators and relations are computable.

[1]  Jean-Baptiste Raclet,et al.  Residual for Component Specifications , 2008, Electron. Notes Theor. Comput. Sci..

[2]  Kim G. Larsen,et al.  Compositional Verification of Probabilistic Processes , 1992, CONCUR.

[3]  Wang Yi,et al.  Probabilistic Extensions of Process Algebras , 2001, Handbook of Process Algebra.

[4]  Axel Legay,et al.  Modal interfaces: unifying interface automata and modal specifications , 2009, EMSOFT '09.

[5]  Bengt Jonsson,et al.  A calculus for communicating systems with time and probabilities , 1990, [1990] Proceedings 11th Real-Time Systems Symposium.

[6]  Nancy A. Lynch,et al.  Probabilistic Simulations for Probabilistic Processes , 1994, Nord. J. Comput..

[7]  Kim G. Larsen,et al.  Modal Specifications , 1989, Automatic Verification Methods for Finite State Systems.

[8]  Jane Hillston,et al.  A compositional approach to performance modelling , 1996 .

[9]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[10]  A. Seidenberg A NEW DECISION METHOD FOR ELEMENTARY ALGEBRA , 1954 .

[11]  Christopher W. Brown Simple CAD Construction and its Applications , 2001, J. Symb. Comput..

[12]  James H. Davenport,et al.  The complexity of quantifier elimination and cylindrical algebraic decomposition , 2007, ISSAC '07.

[13]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[14]  Saugata Basu,et al.  New results on quantifier elimination over real closed fields and applications to constraint databases , 1999, JACM.

[15]  Kim G. Larsen,et al.  On determinism in modal transition systems , 2009, Theor. Comput. Sci..

[16]  Thomas A. Henzinger,et al.  Interface automata , 2001, ESEC/FSE-9.

[17]  Lijun Zhang,et al.  Probabilistic CEGAR , 2008, CAV.

[18]  Hirokazu Anai,et al.  SyNRAC: a maple toolbox for solving real algebraic constraints , 2007, ACCA.

[19]  Suzana Andova,et al.  Process Algebra with Probabilistic Choice , 1999, ARTS.

[20]  N. Meyers,et al.  H = W. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Serge Haddad,et al.  Using Stochastic Comparison for Efficient Model Checking of Uncertain Markov Chains , 2009, 2009 Sixth International Conference on the Quantitative Evaluation of Systems.

[22]  Manuel Núñez,et al.  An Overview of Probabilistic Process Algebras and their Equivalences , 2004, Validation of Stochastic Systems.

[23]  Thomas A. Henzinger,et al.  INTERFACE-BASED DESIGN , 2005 .

[24]  Bengt Jonsson,et al.  A logic for reasoning about time and reliability , 1990, Formal Aspects of Computing.

[25]  Kim G. Larsen,et al.  Modal I/O Automata for Interface and Product Line Theories , 2007, ESOP.

[26]  Joost-Pieter Katoen,et al.  Compositional Abstraction for Stochastic Systems , 2009, FORMATS.

[27]  Holger Hermanns,et al.  Interactive Markov Chains , 2002, Lecture Notes in Computer Science.

[28]  Kim Guldstrand Larsen,et al.  Specification and refinement of probabilistic processes , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[29]  Joost-Pieter Katoen,et al.  Process algebra for performance evaluation , 2002, Theor. Comput. Sci..

[30]  Thomas A. Henzinger,et al.  Compositional Methods for Probabilistic Systems , 2001, CONCUR.

[31]  Thomas A. Henzinger,et al.  Synchronous and Bidirectional Component Interfaces , 2002, CAV.

[32]  Frank Ciesinski,et al.  On Probabilistic Computation Tree Logic , 2004, Validation of Stochastic Systems.

[33]  Mahesh Viswanathan,et al.  Model-Checking Markov Chains in the Presence of Uncertainties , 2006, TACAS.

[34]  Thomas A. Henzinger,et al.  The Embedded Systems Design Challenge , 2006, FM.

[35]  Martin Leucker,et al.  Don't Know in Probabilistic Systems , 2006, SPIN.

[36]  Krishnendu Chatterjee,et al.  Model-Checking omega-Regular Properties of Interval Markov Chains , 2008, FoSSaCS.

[37]  Roberto Passerone,et al.  Why Are Modalities Good for Interface Theories? , 2009, 2009 Ninth International Conference on Application of Concurrency to System Design.

[38]  Joost-Pieter Katoen,et al.  Three-Valued Abstraction for Continuous-Time Markov Chains , 2007, CAV.

[39]  Thomas A. Henzinger,et al.  Interface theories with component reuse , 2008, EMSOFT '08.