Dead-space-based theory correctly predicts excess noise factor for thin GaAs and AlGaAs avalanche photodiodes

The conventional McIntyre carrier multiplication theory for avalanche photodiodes (APDs) does not adequately describe the experimental results obtained from APDs with thin multiplication-regions. Using published data for thin GaAs and Al/sub 0.2/Ga/sub 0.8/As APDs, collected from multiplication-regions of different widths, we show that incorporating dead-space in the model resolves the discrepancy. The ionization coefficients of enabled carriers that have traveled the dead space are determined as functions of the electric field, within the confines of a single exponential model for each device, independent of multiplication-region width. The model parameters are determined directly from experimental data. The use of these physically based ionization coefficients in the dead-space multiplication theory, developed earlier by Hayat et al. provide excess noise factor versus mean gain curves that accord very closely with those measured for each device, regardless of multiplication-region width. It is verified that the ratio of the dead-space to the multiplication-region width increases, for a fixed mean gain, as the width is reduced. This behavior, too, is in accord with the reduction of the excess noise factor predicted by the dead-space multiplication theory.

[1]  Christine M. Maziar,et al.  Design considerations for high performance avalanche photodiode multiplication layers , 1994 .

[2]  K. Brennan,et al.  Experimental determination of impact ionization coefficients in , 1983, IEEE Electron Device Letters.

[3]  Sethumadhavan Chandrasekhar,et al.  Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes , 1989 .

[4]  K. Taniguchi,et al.  Impact ionization model for full band Monte Carlo simulation in GaAs , 1996 .

[5]  M. Karim,et al.  An analytical approximation for the excess noise factor of avalanche photodiodes with dead space , 1999, IEEE Electron Device Letters.

[6]  Joe C. Campbell,et al.  Thin multiplication region InAlAs homojunction avalanche photodiodes , 1998 .

[7]  Bahaa E. A. Saleh,et al.  Generalized excess noise factor for avalanche photodiodes of arbitrary structure , 1990 .

[8]  B.E.A. Saleh,et al.  Noise properties and time response of the staircase avalanche photodiode , 1985, IEEE Transactions on Electron Devices.

[9]  J. David,et al.  A Monte Carlo investigation of multiplication noise in thin p/sup +/-i-n/sup +/ GaAs avalanche photodiodes , 1998 .

[10]  C. R. Crowell,et al.  Ionization coefficients in semiconductors: A nonlocalized property , 1974 .

[11]  Karl Hess,et al.  Impact ionisation in multilayered heterojunction structures , 1980 .

[12]  Joe C. Campbell,et al.  Noise characteristics of thin multiplication region GaAs avalanche photodiodes , 1996 .

[13]  A. Lacaita,et al.  Dead space approximation for impact ionization in silicon , 1996 .

[14]  G. W. Smith,et al.  Non-local aspects of breakdown in pin diodes , 1995 .

[15]  J. N. Hollenhorst A theory of multiplication noise , 1990 .

[16]  F. Capasso,et al.  The graded bandgap multilayer avalanche photodiode: A new low-noise detector , 1982, IEEE Electron Device Letters.

[17]  Bahaa E. A. Saleh,et al.  Effect of dead space on gain and noise in Si and GaAs avalanche photodiodes , 1992 .

[18]  Bahaa E. A. Saleh,et al.  Effect of dead space on the excess noise factor and time response of avalanche photodiodes , 1990 .

[19]  Joe C. Campbell,et al.  Characteristics of GaAs and AlGaAs homojunction avalanche photodiodes with thin multiplication regions , 1997 .

[20]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[21]  John P. R. David,et al.  Avalanche multiplication noise characteristics in thin GaAs p/sup +/-i-n/sup +/ diodes , 1998 .

[22]  R. Mcintyre Multiplication noise in uniform avalanche diodes , 1966 .

[23]  C. R. Crowell,et al.  Threshold Energies for Electron-Hole Pair Production by Impact Ionization in Semiconductors , 1972 .

[24]  C. Hu,et al.  A new look at impact ionization-Part II: Gain and noise in short avalanche photodiodes , 1999 .

[25]  Bahaa E. A. Saleh,et al.  Excess noise factors for conventional and superlattice avalanche photodiodes and photomultiplier tubes , 1986 .

[26]  G. E. Stillman,et al.  Impact ionization in AlxGa1−xAs for x=0.1–0.4 , 1988 .

[27]  Bahaa E. A. Saleh,et al.  Effect of dead space on gain and noise double-carrier-multiplication avalanche photodiodes , 1992, Optical Society of America Annual Meeting.

[28]  M. Teich,et al.  Fundamentals of Photonics , 1991 .

[29]  R. J. McIntyre,et al.  A new look at impact ionization-Part I: A theory of gain, noise, breakdown probability, and frequency response , 1999 .