A more time-efficient gibbs sampling algorithm based on SparseLDA for latent dirichlet allocation

[1]  Philip Resnik,et al.  Tea Party in the House: A Hierarchical Ideal Point Topic Model and Its Application to Republican Legislators in the 112th Congress , 2015, ACL.

[2]  Stefan M. Rüger,et al.  Weakly Supervised Joint Sentiment-Topic Detection from Text , 2012, IEEE Transactions on Knowledge and Data Engineering.

[3]  Panayiotis G. Georgiou,et al.  Supervised acoustic topic model with a consequent classifier for unstructured audio classification , 2012, 2012 10th International Workshop on Content-Based Multimedia Indexing (CBMI).

[4]  Philip Resnik,et al.  A Discriminative Topic Model using Document Network Structure , 2016, ACL.

[5]  David M. Blei,et al.  Probabilistic topic models , 2012, Commun. ACM.

[6]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[7]  Yulan He,et al.  Joint sentiment/topic model for sentiment analysis , 2009, CIKM.

[8]  Alexander J. Smola,et al.  Reducing the sampling complexity of topic models , 2014, KDD.

[9]  Brian D. Davison,et al.  Empirical study of topic modeling in Twitter , 2010, SOMA '10.

[10]  Wesley De Neve,et al.  Using topic models for Twitter hashtag recommendation , 2013, WWW.

[11]  Shuang-Hong Yang,et al.  Dimensionality Reduction and Topic Modeling: From Latent Semantic Indexing to Latent Dirichlet Allocation and Beyond , 2012, Mining Text Data.

[12]  Shrikanth S. Narayanan,et al.  Acoustic topic model for audio information retrieval , 2009, 2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.

[13]  Max Welling,et al.  Fast collapsed gibbs sampling for latent dirichlet allocation , 2008, KDD.

[14]  Gang Hua,et al.  Context aware topic model for scene recognition , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Rajarshi Das,et al.  Gaussian LDA for Topic Models with Word Embeddings , 2015, ACL.

[16]  Scott Sanner,et al.  Improving LDA topic models for microblogs via tweet pooling and automatic labeling , 2013, SIGIR.

[17]  David B. Dunson,et al.  Probabilistic topic models , 2012, Commun. ACM.

[18]  R. Hariharan,et al.  Cluster based human action recognition using latent dirichlet allocation , 2013, 2013 International conference on Circuits, Controls and Communications (CCUBE).

[19]  Andrew McCallum,et al.  Efficient methods for topic model inference on streaming document collections , 2009, KDD.

[20]  Chong Wang,et al.  An Adaptive Learning Rate for Stochastic Variational Inference , 2013, ICML.

[21]  Junghoo Cho,et al.  Social-network analysis using topic models , 2012, SIGIR '12.

[22]  Alice H. Oh,et al.  Aspect and sentiment unification model for online review analysis , 2011, WSDM '11.

[23]  Guanghui Wang,et al.  Scene and place recognition using a hierarchical latent topic model , 2015, Neurocomputing.

[24]  Michael I. Jordan,et al.  DiscLDA: Discriminative Learning for Dimensionality Reduction and Classification , 2008, NIPS.

[25]  Gang Hua,et al.  Semi-supervised Relational Topic Model for Weakly Annotated Image Recognition in Social Media , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Timothy Baldwin,et al.  Learning Word Sense Distributions, Detecting Unattested Senses and Identifying Novel Senses Using Topic Models , 2014, ACL.

[27]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  David M. Blei,et al.  Sparse stochastic inference for latent Dirichlet allocation , 2012, ICML.

[29]  Thomas Stibor,et al.  Efficient Collapsed Gibbs Sampling for Latent Dirichlet Allocation , 2010, ACML.

[30]  Ivan Titov,et al.  A Joint Model of Text and Aspect Ratings for Sentiment Summarization , 2008, ACL.

[31]  Junghoo Cho,et al.  Incorporating popularity in topic models for social network analysis , 2013, SIGIR.

[32]  Marie-Francine Moens,et al.  Multilingual probabilistic topic modeling and its applications in web mining and search , 2014, WSDM.

[33]  Ivan Titov,et al.  Modeling online reviews with multi-grain topic models , 2008, WWW.

[34]  Tie-Yan Liu,et al.  LightLDA: Big Topic Models on Modest Computer Clusters , 2014, WWW.

[35]  David M. Blei,et al.  The Inverse Regression Topic Model , 2014, ICML.