Hermite-Gaussian model for quantum states

Abstract In order to characterize quantum states within the context of information geometry, we propose a generalization of the Gaussian model, which we called the Hermite–Gaussian model. We obtain the Fisher–Rao metric and the scalar curvature for this model, and we show its relation with the one-dimensional quantum harmonic oscillator. Using this model we characterize some families of states of the quantum harmonic oscillator. We find that for eigenstates of the Hamiltonian, mixtures of eigenstates and even or odd superpositions of eigenstates, the associated Fisher–Rao metrics – which are relevant in the context of quantum parameter estimation theory – are diagonal. Finally, we consider the action of the amplitude damping channel and we discuss the relationship between the quantum decay and the different geometric indicators.

[1]  Ignacio S. Gomez,et al.  Notions of the ergodic hierarchy for curved statistical manifolds , 2017, ArXiv.

[2]  J. Gibbs,et al.  The collected works of J. Willard Gibbs , 1948 .

[3]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[4]  C. Carathéodory Untersuchungen über die Grundlagen der Thermodynamik , 1909 .

[5]  Shun-ichi Amari,et al.  Differential geometry of statistical inference , 1983 .

[6]  C. Cafaro,et al.  Quantifying the complexity of geodesic paths on curved statistical manifolds through information geometric entropies and Jacobi fields , 2010, 1011.5555.

[7]  Maureen T. Carroll Geometry , 2017 .

[8]  Frank Nielsen,et al.  Monte Carlo Information Geometry: The dually flat case , 2018, ArXiv.

[9]  Margaret Nichols Trans , 2015, De-centering queer theory.

[10]  E. C. Richard,et al.  The collected works , 1954 .

[11]  Jean-Pierre Crouzeix,et al.  A relationship between the second derivatives of a convex function and of its conjugate , 1977, Math. Program..

[12]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[13]  Stefano Mancini,et al.  Softening the Complexity of Entropic Motion on Curved Statistical Manifolds , 2011, Open Syst. Inf. Dyn..

[14]  Jan Naudts Escort Density Operators and Generalized Quantum Information Measures , 2005, Open Syst. Inf. Dyn..

[15]  B. Frieden,et al.  Physics from Fisher Information: A Unification , 1998 .

[16]  George Ruppeiner,et al.  Riemannian geometry in thermodynamic fluctuation theory , 1995 .

[17]  C. Cafaro,et al.  Information geometry of quantum entangled Gaussian wave-packets , 2011, 1104.1250.

[18]  Sumiyoshi Abe Geometry of escort distributions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[20]  F. Pennini,et al.  Geometrical aspects of a generalized statistical mechanics , 2007 .

[21]  Carlo Cafaro,et al.  Works on an information geometrodynamical approach to chaos , 2008, 0810.4639.

[22]  甘利 俊一 Differential geometry in statistical inference , 1987 .

[23]  D. Bures An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite *-algebras , 1969 .

[24]  Frank Weinhold,et al.  Metric geometry of equilibrium thermodynamics , 1975 .

[25]  Robert Hermann,et al.  Geometry, physics, and systems , 1973 .

[26]  A. Plastino,et al.  Information measures based on Tsallis’ entropy and geometric considerations for thermodynamic systems , 2005, cond-mat/0510434.

[27]  R. MrugaŁa,et al.  Geometrical formulation of equilibrium phenomenological thermodynamics , 1978 .

[28]  G. Ruppeiner,et al.  Thermodynamic curvature measures interactions , 2010, 1007.2160.

[29]  Carlo Cafaro,et al.  Local Softening of Information Geometric Indicators of Chaos in Statistical Modeling in the Presence of Quantum-Like Considerations , 2013, Entropy.