Adaptive web mining of bilingual lexicons for cross language information retrieval

Bilingual web pages contain abundant term translation knowledge which is crucial for query translation in Cross Language Information Retrieval systems. But it is a challenging task to extract term translations from bilingual web pages due to the variation in web page layouts and writing styles. In this paper, based on the observation that translation pairs on the same web page tend to appear following similar patterns, a new extraction model is proposed to adaptively learn extraction patterns and exploit them to facilitate term translation mining from bilingual web pages. Experiments reflect that this model can significantly improve extraction coverage while maintaining high accuracy. It improves query translation in cross-language information retrieval, leading to significantly higher retrieval effectiveness on TREC collections.