Almost-Euclidean Subspaces of l1N\ell_1^N via Tensor Products: A Simple Approach to Randomness Reduction
暂无分享,去创建一个
[1] W. Beckner. Inequalities in Fourier analysis , 1975 .
[2] J. Marcinkiewicz,et al. Quelques inégalités pour les opérations linéaires , 1939 .
[3] T. Figiel,et al. The dimension of almost spherical sections of convex bodies , 1976 .
[4] Inequalities for scalar-valued linear operators that extend to their vector-valued analogues , 1980 .
[5] Shachar Lovett,et al. Almost Euclidean sections of the N-dimensional cross-polytope using O(N) random bits , 2007, Electron. Colloquium Comput. Complex..
[6] Piotr Indyk,et al. Uncertainty principles, extractors, and explicit embeddings of l2 into l1 , 2007, STOC '07.
[7] Roman Vershynin,et al. Uncertainty Principles and Vector Quantization , 2006, IEEE Transactions on Information Theory.
[8] V. Milman,et al. Logarithmic reduction of the level of randomness in some probabilistic geometric constructions , 2006 .
[9] Sorin C. Popescu,et al. Lidar Remote Sensing , 2011 .
[10] K. Ball. An elementary introduction to modern convex geometry, in flavors of geometry , 1997 .
[11] V. Milman. Topics in Asymptotic Geometric Analysis , 2000 .
[12] J. Lindenstrauss,et al. Handbook of geometry of Banach spaces , 2001 .
[13] James R. Lee,et al. Almost Euclidean subspaces of e N 1 via expander codes , 2008, SODA 2008.
[14] Venkatesan Guruswami,et al. Euclidean Sections of with Sublinear Randomness and Error-Correction over the Reals , 2008, APPROX-RANDOM.
[15] N. Tomczak-Jaegermann. Banach-Mazur distances and finite-dimensional operator ideals , 1989 .
[16] M. Rudelson,et al. Euclidean embeddings in spaces of finite volume ratio via random matrices , 2005 .
[17] Борис Сергеевич Кашин,et al. Замечание о задаче сжатого измерения@@@A Remark on Compressed Sensing , 2007 .
[18] V. Milman. New proof of the theorem of A. Dvoretzky on intersections of convex bodies , 1971 .
[19] Andrej Yu. Garnaev,et al. On widths of the Euclidean Ball , 1984 .
[20] G. Pisier. The volume of convex bodies and Banach space geometry , 1989 .
[21] S. Szarek. Convexity, complexity, and high dimensions , 2006 .
[22] Guillaume Aubrun,et al. Hastings’s Additivity Counterexample via Dvoretzky’s Theorem , 2010, 1003.4925.
[23] Silvio Levy,et al. Flavors of Geometry , 1997 .
[24] Piotr Indyk. Dimensionality reduction techniques for proximity problems , 2000, SODA '00.
[25] B. Bollobás. THE VOLUME OF CONVEX BODIES AND BANACH SPACE GEOMETRY (Cambridge Tracts in Mathematics 94) , 1991 .
[26] W. Rudin. Trigonometric Series with Gaps , 1960 .
[27] G. Schechtman. A remark concerning the dependence on ɛ in dvoretzky's theorem , 1989 .
[28] K. Ball. An Elementary Introduction to Modern Convex Geometry , 1997 .
[29] V. Milman,et al. Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .
[30] Yuval Rabani,et al. Explicit Dimension Reduction and Its Applications , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.
[31] Large subspaces ofl∞n and estimates of the gordon-lewis constantand estimates of the gordon-lewis constant , 1980 .
[32] S. Szarek,et al. Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .
[33] Y. Gordon. Some inequalities for Gaussian processes and applications , 1985 .
[34] Noga Alon,et al. Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs , 1992, IEEE Trans. Inf. Theory.