Silicon nitride based plasmonic components for CMOS back-end-of-line integration.

Silicon nitride waveguides provide low propagation loss but weak mode confinement due to the relatively small refractive index contrast between the Si₃N₄ core and the SiO2 cladding. On the other hand, metal-insulator-metal (MIM) plasmonic waveguides offer strong mode confinement but large propagation loss. In this work, MIM-like plasmonic waveguides and passive devices based on horizontal Cu-Si₃N₄-Cu or Cu-SiO₂-Si₃N₄-SiO₂-Cu structures are integrated in the conventional Si₃N₄ waveguide circuits using standard CMOS backend processes, and are characterized around 1550-nm telecom wavelengths using the conventional fiber-waveguide-fiber method. The Cu-Si₃N₄(~100 nm)-Cu devices exhibit ~0.78-dB/μm propagation loss for straight waveguides, ~38% coupling efficiency with the conventional 1-μm-wide Si₃N₄ waveguide through a 2-μm-long taper coupler, ~0.2-dB bending loss for sharp 90° bends, and ~0.1-dB excess loss for ultracompact 1 × 2 and 1 × 4 power splitters. Inserting a ~10-nm SiO₂ layer between the Si3N4 core and the Cu cover (i.e., the Cu-SiO2(~10 nm)-Si₃N₄(~100 nm)-SiO2(~10 nm)-Cu devices), the propagation loss and the coupling efficiency are improved to ~0.37 dB/μm and ~52% while the bending loss and the excess loss are degraded to ~3.2 dB and ~2.1 dB, respectively. These experimental results are roughly consistent with the numerical simulation results after taking the influence of possible imperfect fabrication into account. Ultracompact plasmonic ring resonators with 1-μm radius are demonstrated with an extinction ratio of ~18 dB and a quality factor of ~84, close to the theoretical prediction.

[1]  Michal Lipson,et al.  Scalable 3D dense integration of photonics on bulk silicon. , 2011, Optics express.

[2]  H. Atwater,et al.  Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides , 2012 .

[3]  Jin-Soo Shin,et al.  Characterizations of realized metal-insulator-silicon-insulator-metal waveguides and nanochannel fabrication via insulator removal. , 2012, Optics express.

[4]  G Borghs,et al.  Plasmon filters and resonators in metal-insulator-metal waveguides. , 2012, Optics express.

[5]  Jianguo Tian,et al.  Optical properties of metal-multi-insulator-metal plasmonic waveguides. , 2012, Optics express.

[6]  Shiyang Zhu,et al.  Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration. , 2011, Optics express.

[7]  Roberto Morandotti,et al.  CMOS-compatible integrated optical hyper-parametric oscillator , 2010 .

[8]  K. Diest,et al.  Vanadium dioxide based plasmonic modulators. , 2012, Optics express.

[9]  Shanhui Fan,et al.  Elements for Plasmonic Nanocircuits with Three‐Dimensional Slot Waveguides , 2010, Advanced materials.

[10]  Min Qiu,et al.  Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface , 2009 .

[11]  P. Ho,et al.  Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes. , 2009, Optics express.

[12]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[13]  H. Atwater,et al.  Unity-order index change in transparent conducting oxides at visible frequencies. , 2010, Nano letters (Print).

[14]  Ning-Ning Feng,et al.  Metal–Dielectric Slot-Waveguide Structures for the Propagation of Surface Plasmon Polaritons at 1.55 $\mu{\hbox {m}}$ , 2007, IEEE Journal of Quantum Electronics.

[15]  Michal Lipson,et al.  High confinement micron-scale silicon nitride high Q ring resonator. , 2009, Optics express.

[16]  Guo-Qiang Lo,et al.  Experimental Demonstration of Vertical ${\rm Cu}\hbox{-}{\rm SiO}_{2}\hbox{-}{\rm Si}$ Hybrid Plasmonic Waveguide Components on an SOI Platform , 2012, IEEE Photonics Technology Letters.

[17]  Rupert F. Oulton,et al.  Confinement and propagation characteristics of subwavelength plasmonic modes , 2008 .

[18]  Keren Bergman,et al.  Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors , 2011, JETC.

[19]  L. Douillard,et al.  Loss mechanisms of surface plasmon polaritons propagating on a smooth polycrystalline Cu surface. , 2012, Optics express.

[20]  Shiyang Zhu,et al.  Performance of ultracompact copper-capped silicon hybrid plasmonic waveguide-ring resonators at telecom wavelengths. , 2012, Optics express.

[21]  S. Roberts Optical Properties of Copper , 1960 .

[22]  Ultracompact plasmonic racetrack resonators in metal-insulator-metal waveguides , 2010, 1001.4052.

[23]  Shiyang Zhu,et al.  Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides. , 2013, Optics express.

[24]  G. Lo,et al.  Experimental demonstration of integrated horizontal Cu-Si3N4-Cu plasmonic waveguide and passive components , 2012, 2012 Photonics Global Conference (PGC).

[25]  M. Lipson,et al.  Ultrabroadband supercontinuum generation in a CMOS-compatible platform. , 2012, Optics letters.

[26]  G. Lo,et al.  Experimental Demonstration of Horizontal Nanoplasmonic Slot Waveguide-Ring Resonators With Submicrometer Radius , 2011, IEEE Photonics Technology Letters.

[27]  Shiyang Zhu,et al.  Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO₂-Si-SiO₂-Cu nanoplasmonic waveguides. , 2012, Optics express.

[28]  Liesbet Lagae,et al.  Electrical detection of confined gap plasmons in metal-insulator-metal waveguides , 2009 .

[29]  Michal Lipson,et al.  Subwavelength confinement in an integrated metal slot waveguide on silicon. , 2006, Optics letters.