Idempotent Structures in Optimization

Consider the set A = R ∪ {+∞} with the binary operations o1 = max and o2 = + and denote by An the set of vectors v = (v1,...,vn) with entries in A. Let the generalised sum u o1 v of two vectors denote the vector with entries uj o1 vj , and the product a o2 v of an element a ∈ A and a vector v ∈ An denote the vector with the entries a o2 vj . With these operations, the set An provides the simplest example of an idempotent semimodule. The study of idempotent semimodules and their morphisms is the subject of idempotent linear algebra, which has been developing for about 40 years already as a useful tool in a number of problems of discrete optimisation. Idempotent analysis studies infinite dimensional idempotent semimodules and is aimed at the applications to the optimisations problems with general (not necessarily finite) state spaces. We review here the main facts of idempotent analysis and its major areas of applications in optimisation theory, namely in multicriteria optimisation, in turnpike theory and mathematical economics, in the theory of generalised solutions of the Hamilton-Jacobi Bellman (HJB) equation, in the theory of games and controlled Marcov processes, in financial mathematics.

[1]  Terry Lyons,et al.  Uncertain volatility and the risk-free synthesis of derivatives , 1995 .

[2]  Jeremy Gunawardena,et al.  Idempotency: An introduction to idempotency , 1998 .

[3]  V. Kolokoltsov,et al.  Idempotent Analysis and Its Applications , 1997 .

[4]  P. Lions,et al.  Hamilton-Jacobi equations in infinite dimensions I. Uniqueness of viscosity solutions , 1985 .

[5]  R. Bellman Dynamic programming. , 1957, Science.

[6]  Marianne Akian,et al.  Densities of idempotent measures and large deviations , 1999 .

[7]  S. Gaubert,et al.  Asymptotics of the Perron eigenvalue and eigenvector using Max-algebra , 1998 .

[8]  S. Yakovenko,et al.  Nonlinear semigroups and infinite horizon optimization , 1992 .

[9]  Alain Haurie,et al.  On Existence of Overtaking Optimal Trajectories Over an Infinite Time Horizon , 1976, Math. Oper. Res..

[10]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[11]  Stationary Hamilton-Jacobi and Bellman equations (existence and uniqueness of solutions) , 1992 .

[12]  Vassili N. Kolokoltsov,et al.  Idempotency: A new differential equation for the dynamics of the Pareto sets , 1998 .

[13]  P. Lions,et al.  Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .

[14]  Michel Minoux,et al.  Graphs and Algorithms , 1984 .

[15]  P I Dudnikov,et al.  ENDOMORPHISMS OF SEMIMODULES OVER SEMIRINGS WITH AN IDEMPOTENT OPERATION , 1992 .

[16]  Geert Jan Olsder,et al.  Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .

[17]  Victor Pavlovich Maslov,et al.  Mathematical aspects of computer engineering , 1988 .

[18]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[19]  Peter Butkovic,et al.  Strong Regularity of Matrices - A Survey of Results , 1994, Discret. Appl. Math..

[20]  Jean-Pierre Quadrat,et al.  Idempotency: Duality between probability and optimization , 1998 .

[21]  F. Baccelli Ergodic Theory of Stochastic Petri Networks , 1992 .

[22]  Grigori Litvinov,et al.  The correspondence principle for Idempotent Calculus and some computer applications // Gunawardena , 1998 .

[23]  M. Crandall,et al.  Some relations between nonexpansive and order preserving mappings , 1980 .

[24]  L. E. Stern Criteria of optimality in the infinite-time optimal control problem , 1984 .

[25]  Roger D. Nussbaum,et al.  Convergence of iterates of a nonlinear operator arising in statistical mechanics , 1991 .

[26]  Vassili N. Kolokoltsov,et al.  Nonexpansive maps and option pricing theory , 1998, Kybernetika.

[27]  S. Varadhan Large Deviations and Applications , 1984 .

[28]  Martin L. Weitzman,et al.  Duality Theory for Infinite Horizon Convex Models , 1973 .

[29]  U. Zimmermann Linear and combinatorial optimization in ordered algebraic structures , 1981 .

[30]  Jeremy Gunawardena,et al.  Min-max functions , 1994, Discret. Event Dyn. Syst..

[31]  V. Kolokoltsov On linear, additive, and homogeneous operators in idempotent analysis , 1992 .