Use of composite voxels in FFT-based homogenization

Abstract FFT-based homogenization methods operate on regular voxel grids. In general, such grids cannot resolve interfaces exactly. In this article we assign voxels containing an interface a stiffness different from the constituent materials in a systematic fashion. More precisely, we characterize the class of these so-called composite voxels leading to convergence of the discretizations. Considering the interface in the composite voxel as linear, we furnish the voxel with the corresponding laminate stiffness. These laminate voxels are shown to increase both the accuracy of the calculated effective properties and the local quality of the strain and stress fields dramatically.

[1]  J. Michel,et al.  Analysis of Inhomogeneous Materials at Large Strains using Fast Fourier Transforms , 2003 .

[2]  Andreas Wiegmann,et al.  Design of acoustic trim based on geometric modeling and flow simulation for non-woven , 2006 .

[3]  Steven G. Johnson,et al.  FFTW: an adaptive software architecture for the FFT , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[4]  M. Diehl,et al.  A spectral method solution to crystal elasto-viscoplasticity at finite strains , 2013 .

[5]  G. Bonnet,et al.  A polarization‐based FFT iterative scheme for computing the effective properties of elastic composites with arbitrary contrast , 2012 .

[6]  A. Rollett,et al.  Fast fourier transform-based modeling for the determination of micromechanical fields in polycrystals , 2011 .

[7]  Matti Schneider,et al.  Voxel‐based fast solution of the Lippmann‐Schwinger equation with smooth material interfaces , 2014 .

[8]  Graeme W. Milton,et al.  A fast numerical scheme for computing the response of composites using grid refinement , 1999 .

[9]  Luc Dormieux,et al.  FFT-based methods for the mechanics of composites: A general variational framework , 2010 .

[10]  O. Lopez-Pamies,et al.  Microstructure evolution in hyperelastic laminates and implications for overall behavior and macroscopic stability , 2009 .

[11]  R. Lebensohn,et al.  Modeling microstructural effects in dilatational plasticity of polycrystalline materials , 2012 .

[12]  L. Dormieux,et al.  Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of composites , 2012 .

[13]  R. Lebensohn,et al.  Study of internal lattice strain distributions in stainless steel using a full-field elasto-viscoplastic formulation based on fast Fourier transforms , 2012 .

[14]  A. Rollett,et al.  Stress hot spots in viscoplastic deformation of polycrystals , 2010 .

[15]  G. Milton The Theory of Composites , 2002 .

[16]  Philip Eisenlohr,et al.  An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials , 2012 .

[17]  A. Rollett,et al.  Modeling the viscoplastic micromechanical response of two-phase materials using Fast Fourier Transforms , 2011 .

[18]  H. Moulinec,et al.  A fast numerical method for computing the linear and nonlinear mechanical properties of composites , 1994 .

[19]  Jan Novák,et al.  Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients , 2010, J. Comput. Phys..

[20]  Zvi Hashin,et al.  The Elastic Moduli of Heterogeneous Materials , 1962 .

[21]  M. Schneider Convergence of FFT‐based homogenization for strongly heterogeneous media , 2015 .

[22]  Suresh G. Advani,et al.  The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites , 1987 .

[23]  R. Lebensohn,et al.  Dilatational viscoplasticity of polycrystalline solids with intergranular cavities , 2011 .

[24]  Renald Brenner,et al.  Numerical computation of the response of piezoelectric composites using Fourier transform , 2009 .

[25]  Ricardo A. Lebensohn,et al.  Simulation of micromechanical behavior of polycrystals: finite elements versus fast Fourier transforms , 2009 .

[26]  Hervé Moulinec,et al.  A numerical method for computing the overall response of nonlinear composites with complex microstructure , 1998, ArXiv.

[27]  R. K. Mittal,et al.  Influence of fiber length, fiber orientation, and interfacial adhesion on poly (butylene terephthalate)/polyethylene alloys reinforced with short glass fibers , 1994 .

[28]  E. Kröner Statistical continuum mechanics , 1971 .

[29]  Graeme W. Milton,et al.  An accelerated FFT algorithm for thermoelastic and non‐linear composites , 2008 .

[30]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[31]  Hervé Moulinec,et al.  A computational scheme for linear and non‐linear composites with arbitrary phase contrast , 2001 .

[32]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .

[33]  M. Schneider,et al.  Efficient fixed point and Newton–Krylov solvers for FFT-based homogenization of elasticity at large deformations , 2014 .

[34]  C. Sinclair,et al.  Accounting for local interactions in the prediction of roping of ferritic stainless steel sheets , 2012 .

[35]  Ba Nghiep Nguyen,et al.  Fiber Length and Orientation in Long-Fiber Injection-Molded Thermoplastics — Part I: Modeling of Microstructure and Elastic Properties , 2008 .

[36]  Rudolf Zeller,et al.  Elastic Constants of Polycrystals , 1973 .

[37]  Guy Bonnet,et al.  Effective properties of elastic periodic composite media with fibers , 2007 .

[38]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[39]  B. Nysten,et al.  Quantitative approach towards the measurement of polypropylene/(ethylene-propylene) copolymer blends surface elastic properties by AFM , 1998 .

[40]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of polycrystals , 1962 .

[41]  Peter Gumbsch,et al.  3D microstructure modeling of long fiber reinforced thermoplastics , 2014 .

[42]  E. Kröner Bounds for effective elastic moduli of disordered materials , 1977 .

[43]  Dierk Raabe,et al.  Comparison of finite element and fast Fourier transform crystal plasticity solvers for texture prediction , 2010 .

[44]  A. Nikishin,et al.  Calculation of averaged elastic properties of materials having noncircular character of pole figures , 2008 .