Fine hierarchies and m-reducibilities in theoretical computer science
暂无分享,去创建一个
[1] Edith Hemaspaandra,et al. What's up with downward collapse: using the easy-hard technique to link Boolean and polynomial hierarchy collapses , 1998, SIGA.
[2] Y. Ershov. A hierarchy of sets. I , 1968 .
[3] Klaus W. Wagner. Leaf Language Classes , 2004, MCU.
[4] Eric Allender,et al. Reducibility and Completeness , 2010, Algorithms and Theory of Computation Handbook.
[5] Olivier Finkel,et al. An Effective Extension of the Wagner Hierarchy to Blind Counter Automata , 2001, CSL.
[6] Victor L. Selivanov,et al. A Useful Undecidable Theory , 2007, CiE.
[7] Thomas Wilke,et al. Computing the Wadge Degree, the Lifschitz Degree, and the Rabin Index of a Regular Language of Infinite Words in Polynomial Time , 1995, TAPSOFT.
[8] Victor L. Selivanov,et al. Hierarchies and reducibilities on regular languages related to modulo counting , 2009, RAIRO Theor. Informatics Appl..
[9] Eric Allender,et al. Complexity , 2007, Scholarpedia.
[10] V. L. Selivanov. Fine hierarchy and definable index sets , 1991 .
[11] Klaus Weihrauch,et al. Levels of Degeneracy and Exact Lower Complexity Bounds for Geometric Algorithms , 1994, CCCG.
[12] Melven R. Krom. Separation Principles in the Hierarchy Theory of Pure First-Order Logic , 1963, J. Symb. Log..
[13] José L. Balcázar,et al. Structural Complexity I , 1995, Texts in Theoretical Computer Science An EATCS Series.
[14] Klaus W. Wagner. Eine topologische Charakterisierung einiger Klassen regulärer Folgenmengen , 1977, J. Inf. Process. Cybern..
[15] Wolfgang Thomas,et al. Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..
[16] Klaus W. Wagner,et al. The Boolean Hierarchy over Level 1/2 of the Straubing-Therien Hierarchy , 1998, ArXiv.
[17] Victor L. Selivanov,et al. Hierarchies of Δ02‐measurable k ‐partitions , 2007, Math. Log. Q..
[18] P. Odifreddi. Classical recursion theory , 1989 .
[19] Victor L. Selivanov,et al. The quotient algebra of labeled forests modulo h-equivalence , 2007 .
[20] S. Lempp. Hyperarithmetical index sets in recursion theory , 1987 .
[21] Victor L. Selivanov,et al. Fine hierarchies and Boolean terms , 1995, Journal of Symbolic Logic.
[22] John R. Steel,et al. Determinateness and the separation property , 1981, Journal of Symbolic Logic.
[23] Klaus Weihrauch,et al. Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.
[24] Victor L. Selivanov. A Logical Approach to Decidability of Hierarchies of Regular Star-Free Languages , 2001, STACS.
[25] J. R. Büchi,et al. The monadic second order theory of all countable ordinals , 1973 .
[26] Victor L. Selivanov. Hierarchies of [ ... ] º 2-measurable k -partitions , 2007 .
[27] Heribert Vollmer,et al. On Balanced vs . Unbalanced Computation Trees , 2007 .
[28] Boris A. Trakhtenbrot,et al. Finite automata : behavior and synthesis , 1973 .
[29] V. L. Selivanov. Structures of the degrees of unsolvability of index sets , 1979 .
[30] Peter Hertling,et al. Unstetigkeitsgrade von Funktionen in der effektiven Analysis , 1996 .
[31] N. Vereshchagin. RELATIVIZABLE AND NONRELATIVIZABLE THEOREMS IN THE POLYNOMIAL THEORY OF ALGORITHMS , 1994 .
[32] O. H. Lowry. Academic press. , 1972, Analytical chemistry.
[33] Olivier Finkel,et al. Borel ranks and Wadge degrees of context free $\omega$-languages , 2006, Mathematical Structures in Computer Science.
[34] Victor L. Selivanov. Fine Hierarchy of Regular omega-Languages , 1995, TAPSOFT.
[35] Dung T. Huynh,et al. Finite-Automaton Aperiodicity is PSPACE-Complete , 1991, Theor. Comput. Sci..
[36] Joseph B. Kruskal,et al. The Theory of Well-Quasi-Ordering: A Frequently Discovered Concept , 1972, J. Comb. Theory A.
[37] D. C. Cooper,et al. Theory of Recursive Functions and Effective Computability , 1969, The Mathematical Gazette.
[38] Victor L. Selivanov,et al. Undecidability in the Homomorphic Quasiorder of Finite Labeled Forests , 2006, CiE.
[39] J. Richard Büchi,et al. The monadic second order theory of ω1 , 1973 .
[40] Jacques Stern,et al. Characterizations of Some Classes of Regular Events , 1985, Theor. Comput. Sci..
[41] Victor L. Selivanov,et al. Fine Hierarchy of Regular Aperiodic omega -Languages , 2007, Developments in Language Theory.
[42] A. I. Mal'cev. Algorithms and Recursive Functions , 1970 .
[43] Olivier Finkel,et al. Topology and Ambiguity in Omega Context Free Languages , 2008, ArXiv.
[44] Larry J. Stockmeyer,et al. The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..
[45] Brian A. Davey,et al. An Introduction to Lattices and Order , 1989 .
[46] Victor L. Selivanov,et al. Wadge degrees of ω-languages of deterministic Turing machines , 2003 .
[47] Peter Hertling,et al. Topological Complexity with Continuous Operations , 1996, J. Complex..
[48] Gerd Wechsung,et al. On the Boolean closure of NP , 1985, FCT.
[49] Bernd Borchert,et al. On the Acceptance Power of Regular Languages , 1994, Theor. Comput. Sci..
[50] R. Epstein,et al. Hierarchies of sets and degrees below 0 , 1981 .
[51] Christian Glaßer,et al. The Boolean Structure of Dot-Depth One , 2001, J. Autom. Lang. Comb..
[52] Heribert Vollmer,et al. Lindström Quantifiers and Leaf Language Definability , 1996, Int. J. Found. Comput. Sci..
[53] A. Tang. Chain Properties in P omega , 1979, Theor. Comput. Sci..
[54] Victor L. Selivanov,et al. Complexity of Topological Properties of Regular omega-Languages , 2008, Fundam. Informaticae.
[55] Albert R. Meyer,et al. The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.
[56] Lane A. Hemaspaandra,et al. Query Order , 1998, SIAM J. Comput..
[57] V. L. Selivanov,et al. Structure of powers of generalized index sets , 1982 .
[58] V. L. Selivanov. Hierarchy of limiting computations , 1984 .
[59] Victor L. Selivanov,et al. Undecidability in the Homomorphic Quasiorder of Finite Labelled Forests , 2007, J. Log. Comput..
[60] Hilary Putnam,et al. Trial and error predicates and the solution to a problem of Mostowski , 1965, Journal of Symbolic Logic.
[61] Jean-Éric Pin,et al. Logic on Words , 2001, Bull. EATCS.
[62] J. R. Büchi,et al. Solving sequential conditions by finite-state strategies , 1969 .
[63] Paul Gastin,et al. First-order definable languages , 2008, Logic and Automata.
[64] Victor L. Selivanov. Two Refinements of the Polynomial Hierarcht , 1994, STACS.
[65] Victor L. Selivanov,et al. On the Wadge Reducibility of k-Partitions , 2008, CCA.
[66] Heribert Vollmer,et al. On the power of number-theoretic operations with respect to counting , 1995, Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference.
[67] Raymond E. Miller,et al. Varieties of Formal Languages , 1986 .
[68] Frank Stephan,et al. The dot-depth and the polynomial hierarchies correspond on the delta levels , 2005, Int. J. Found. Comput. Sci..
[69] Wolfgang Thomas,et al. Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[70] V. L. Selivanov. Refining the polynomial hierarchy , 1999 .
[71] Thomas Schwentick,et al. On the power of polynomial time bit-reductions , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.
[72] Jean Saint Raymond,et al. Les propriétés de réduction et de norme pour les classes de Boréliens , 1988 .
[73] Christian Glaßer,et al. Languages polylog-time reducible to dot-depth 1/2 , 2007, J. Comput. Syst. Sci..
[74] Ludwig Staiger,et al. Automatentheoretische und automatenfreie Charakterisierungen topologischer Klassen regulärer Folgenmengen , 1974, J. Inf. Process. Cybern..
[75] R. McNaughton,et al. Counter-Free Automata , 1971 .
[76] Max Crochemore,et al. Algorithms and Theory of Computation Handbook , 2010 .
[77] Wolfgang Thomas,et al. Languages, Automata, and Logic , 1997, Handbook of Formal Languages.
[78] Erkko Lehtonen. Labeled posets are universal , 2008, Eur. J. Comb..
[79] José L. Balcázar,et al. Structural Complexity II , 2012, EATCS.
[80] Jeanleah Mohrherr. Kleene Index Sets and Functional m-Degrees , 1983, J. Symb. Log..
[81] Olivier Carton,et al. Chains and Superchains for ω-Rational Sets, Automata and Semigroups , 1997, Int. J. Algebra Comput..
[82] Pierluigi Crescenzi,et al. A Uniform Approach to Define Complexity Classes , 1992, Theor. Comput. Sci..
[83] Victor L. Selivanov,et al. Hierarchies in φ‐spaces and applications , 2005, Math. Log. Q..
[84] Tom Linton,et al. Countable structures, Ehrenfeucht strategies, and Wadge reductions , 1991, Journal of Symbolic Logic.
[85] Filip Murlak. The Wadge Hierarchy of Deterministic Tree Languages , 2008, Log. Methods Comput. Sci..
[86] Olivier Finkel,et al. Wadge hierarchy of omega context-free languages , 2001, Theor. Comput. Sci..
[87] R. Soare. Recursively enumerable sets and degrees , 1987 .
[88] K. Hofmann,et al. Continuous Lattices and Domains , 2003 .
[89] Victor L. Selivanov. Relating Automata-theoretic Hierarchies to Complexity-theoretic Hierarchies , 2002, RAIRO Theor. Informatics Appl..
[90] Ludwig Staiger,et al. Ω-languages , 1997 .
[91] Victor L. Selivanov. Wadge Degrees of [omega]-Languages of Deterministic Turing Machines , 2003, RAIRO Theor. Informatics Appl..
[92] V. L. Selivanov. Refined hierarchy of formulas , 1991 .
[93] Stefan Friedrich,et al. Topology , 2019, Arch. Formal Proofs.
[94] Yuri L. Ershov,et al. Theory of Numberings , 1999, Handbook of Computability Theory.
[95] V. L. Selivanov. Index sets of classes of hyper-hypersimple sets , 1990 .
[96] Edith Hemaspaandra,et al. A Downward Collapse within the Polynomial Hierarchy , 1999, SIAM J. Comput..
[97] Armin Hemmerling,et al. Hierarchies of Function Classes Defined by the First-Value Operator: (Extended Abstract) , 2005, CCA.
[98] Victor Selivanov. Fine hierarchy and definability in the Lindenbaum algebra , 1996 .
[99] Christian Glaßer,et al. The Shrinking Property for NP and coNP , 2008, CiE.
[100] Victor L. Selivanov. Classifying omega-regular partitions , 2007, LATA.
[101] S. S. Goncharov,et al. Computability and models - perspectives east and west , 2003, The University series in mathematics.
[102] J. Ersov. Theorie der Numerierungen II , 1973 .
[103] M Sidman,et al. Equivalence relations. , 1997, Journal of the experimental analysis of behavior.
[104] Jörg Flum,et al. Mathematical logic , 1985, Undergraduate texts in mathematics.
[105] Alexander S. Kechris,et al. Π11 Borel sets , 1989, Journal of Symbolic Logic.
[106] Erkko Lehtonen. Descending Chains and Antichains of the Unary, Linear, and Monotone Subfunction Relations , 2006, Order.
[107] Arnold W. Miller,et al. Rigid Borel sets and better quasi-order theory , 1985 .
[108] J. W. Addison,et al. Separation principles in the hierarchies of classical and effective descriptive set theory , 1958 .
[109] J. Büchi. Weak Second‐Order Arithmetic and Finite Automata , 1960 .
[110] Robert Fleischer. New Physics in B and K Decays , 2005 .
[111] Frank Stephan,et al. On Existentially First-Order Definable Languages and Their Relation to NP , 1998, ICALP.
[112] Barbara F. Csima,et al. Boolean Algebras, Tarski Invariants, and Index Sets , 2006, Notre Dame J. Formal Log..
[113] V. L. Selivanov. Hierearchies of hyperarithmetical sets and functions , 1983 .
[114] William W. Wadge,et al. Reducibility and Determinateness on the Baire Space , 1982 .
[115] Jr. Hartley Rogers. Theory of Recursive Functions and Effective Computability , 1969 .
[116] Scott Aaronson,et al. The Complexity Zoo , 2008 .
[117] J. U. L. Ersov,et al. Theorie der Numerierungen II , 1975, Math. Log. Q..
[118] Dominique Perrin,et al. Finite Automata , 1958, Philosophy.
[119] F. Stephan,et al. Set theory , 2018, Mathematical Statistics with Applications in R.
[120] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[121] Alexander Moshe Rabinovich,et al. Logical Refinements of Church's Problem , 2007, CSL.
[122] Grzegorz Rozenberg,et al. Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.
[123] Zoltán Ésik,et al. Temporal Logic with Cyclic Counting and the Degree of Aperiodicity of Finite Automata , 2001, Acta Cybern..
[124] José L. Balcázar,et al. Structural complexity 1 , 1988 .
[125] Victor L. Selivanov. Some Reducibilities on Regular Sets , 2005, CiE.
[126] Victor L. Selivanov,et al. Definability in the Homomorphic Quasiorder of Finite Labeled Forests , 2007, CiE.
[127] V. Selivanov. Boolean Hierarchies of Partitions over a Reducible Base , 2004 .
[128] Olivier Finkel,et al. Borel ranks and Wadge degrees of context free ω-languages , 2005 .
[129] Yuri Leonidovich Ershov,et al. Theory of Domains and Nearby (Invited Paper) , 1993, Formal Methods in Programming and Their Applications.
[130] Robert van Wesep,et al. Wadge Degrees and Projective Ordinals: The Cabal Seminar, Volume II: Wadge degrees and descriptive set theory , 1978 .
[131] Jin-Yi Cai,et al. The Boolean Hierarchy: Hardware over NP , 1986, SCT.
[132] Armin Hemmerling. Characterizations of the class Deltata2 over Euclidean spaces , 2004, Math. Log. Q..
[133] Filip Murlak,et al. On the Topological Complexity of Weakly Recognizable Tree Languages , 2007, FCT.
[134] Victor L. Selivanov. Undecidability in Some Structures Related to Computation Theory , 2009, J. Log. Comput..
[135] Klaus W. Wagner,et al. The Difference and Truth-Table Hierarchies for NP , 1987, RAIRO Theor. Informatics Appl..
[136] Olivier Finkel,et al. Borel hierarchy and omega context free languages , 2003, Theor. Comput. Sci..
[137] Klaus W. Wagner. A Note on Parallel Queries and the Symmetric-Difference Hierarchy , 1998, Inf. Process. Lett..
[138] Klaus W. Wagner,et al. The boolean hierarchy of NP-partitions , 2008, Inf. Comput..
[139] Jim Kadin. The Polynomial Time Hierarchy Collapses if the Boolean Hierarchy Collapses , 1988, SIAM J. Comput..
[140] William W. Wadge,et al. Degrees of complexity of subsets of the baire space , 1972 .
[141] Rajeev Alur,et al. Visibly pushdown languages , 2004, STOC '04.
[142] Dominique Perrin,et al. First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..
[143] A. Louveau,et al. Some results in the wadge hierarchy of borel sets , 1983 .
[144] Armin Hemmerling,et al. The Hausdorff-Ershov Hierarchy in Euclidean Spaces , 2006, Arch. Math. Log..
[145] Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity , 1994, Progress in Theoretical Computer Science.
[146] W. Thomas. Star-Free Regular Sets of ~o-Sequences , 2004 .
[147] Louise Hay,et al. A discrete chain of degrees of index sets , 1972, Journal of Symbolic Logic.
[148] R. Vaught. Invariant sets in topology and logic , 1974 .
[149] Heribert Vollmer,et al. On balanced versus unbalanced computation trees , 2005, Mathematical systems theory.
[150] Frank Stephan,et al. The Dot-Depth and the Polynomial Hierarchy Correspond on the Delta Levels , 2004, Developments in Language Theory.
[151] José L. Balcázar,et al. Structural complexity 2 , 1990 .
[152] Andreas Blass,et al. Equivalence Relations, Invariants, and Normal Forms , 1983, SIAM J. Comput..
[153] Mikhail J. Atallah,et al. Algorithms and Theory of Computation Handbook , 2009, Chapman & Hall/CRC Applied Algorithms and Data Structures series.
[154] Victor L. Selivanov,et al. Towards a descriptive set theory for domain-like structures , 2006, Theor. Comput. Sci..
[155] Victor L. Selivanov,et al. Complexity of Aperiodicity for Topological Properties of Regular omega-Languages , 2008, CiE.
[156] Victor L. Selivanov,et al. A reducibility for the dot-depth hierarchy , 2005, Theor. Comput. Sci..
[157] F. Hausdorff. Grundzüge der Mengenlehre , 1914 .