Reconfiguration Heuristics for Logical Topologies in Wide-Area WDM Networks

Wavelength division multiplexing (WDM) technology offers the capability of building wide-area networks with high speed. Reconfigurability is a key feature of a WDM network that enables the network logical topology to change dynamically in response to the changing traffic patterns. There are two important issues involved in the reconfiguration of a network logical topology. One is how to determine the new logical topology corresponding to the current topology. It needs to consider a trade-off between the performance of the new target topology and the cost of the topology transition from the current topology to the new one. The other is how to determine the transition sequence from the current topology to the new one. It needs to control the disruption to the network as less as possible during the reconfiguration process. In this paper, we focus on the latter problem and propose several heuristic algorithms that reconfigure logical topologies in wide-area wavelength-routed optical networks. Our reconfiguration algorithms attempt to control the disruption to the network as less as possible during the reconfiguration process. For this purpose, a lightpath is taken as the minimum reconfiguration unit. The proposed algorithms are evaluated by using an NFSNET-like network model with 16 nodes and 25 links. The results show that very simple algorithms provide very small computational complexity but poor performance, i.e., large network disruption, and that an efficient algorithm provides reasonable computational complexity and very good performance. More complex algorithms may improve performance somewhat further but have unrealistically large computational complexity.

[1]  Biswanath Mukherjee,et al.  Some principles for designing a wide-area optical network , 1994, Proceedings of INFOCOM '94 Conference on Computer Communications.

[2]  Yuji Oie,et al.  Reconfiguration procedures for torus lightwave networks , 1998, ICC '98. 1998 IEEE International Conference on Communications. Conference Record. Affiliated with SUPERCOMM'98 (Cat. No.98CH36220).

[3]  Imrich Chlamtac,et al.  Lightpath communications: an approach to high bandwidth optical WAN's , 1992, IEEE Trans. Commun..

[4]  Kumar N. Sivarajan,et al.  Optical Networks: A Practical Perspective , 1998 .

[5]  Eytan Modiano,et al.  Dynamic load balancing for WDM-based packet networks , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[6]  Kumar N. Sivarajan,et al.  Design of Logical Topologies for Wavelength-Routed Optical Networks , 1996, IEEE J. Sel. Areas Commun..

[7]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[8]  Anthony S. Acampora,et al.  Branch-exchange sequences for reconfiguration of lightwave networks , 1994, IEEE Trans. Commun..

[9]  Byrav Ramamurthy,et al.  Virtual topology reconfiguration of wavelength-routed optical WDM networks , 2000, Globecom '00 - IEEE. Global Telecommunications Conference. Conference Record (Cat. No.00CH37137).

[10]  Biswanath Mukherjee,et al.  Wavelength-routed optical networks: linear formulation, resource budgeting tradeoffs, and a reconfiguration study , 2000, TNET.