Quantum Public-Key Cryptosystems

This paper presents a new paradigm of cryptography, quantum public-key cryptosystems. In quantum public-key cryptosystems, all parties including senders, receivers and adversaries are modeled as quantum (probabilistic) poly-time Turing (QPT) machines and only classical channels (i.e., no quantum channels) are employed. A quantum trapdoor one-way function, f, plays an essential role in our system, in which a QPT machine can compute f with high probability, any QPT machine can invert f with negligible probability, and a QPT machine with trapdoor data can invert f. This paper proposes a concrete scheme for quantum public-key cryptosystems: a quantum public-key encryption scheme or quantum trapdoor one-way function. The security of our schemes is based on the computational assumption (over QPT machines) that a class of subset-sum problems is intractable against any QPT machine. Our scheme is very efficient and practical if Shor's discrete logarithm algorithm is efficiently realized on a quantum machine.

[1]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[2]  J. Neukirch Algebraic Number Theory , 1999 .

[3]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[4]  Louis Salvail,et al.  Quantum Oblivious Mutual Identification , 1995, EUROCRYPT.

[5]  Masao Kasahara,et al.  New Public-Key Cryptosystem Using Discrete Logarithms over GF(p) , 1991 .

[6]  Gilles Brassard,et al.  An Update on Quantum Cryptography , 1985, CRYPTO.

[7]  Barry C. Sanders,et al.  Security Aspects of Practical Quantum Cryptography , 2000, EUROCRYPT.

[8]  Silvio Micali,et al.  A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks , 1988, SIAM J. Comput..

[9]  Gilles Brassard,et al.  Experimental Quantum Cryptography , 1990, EUROCRYPT.

[10]  N. Gisin,et al.  Quantum cryptography , 1998 .

[11]  Serge Vaudenay,et al.  Cryptanalysis of the Chor-Rivest Cryptosystem , 1998, CRYPTO.

[12]  Andrew M. Odlyzko,et al.  Cryptanalytic attacks on the multiplicative knapsack cryptosystem and on Shamir's fast signature scheme , 1984, IEEE Trans. Inf. Theory.

[13]  Oded Goldreich,et al.  On the Foundations of Modern Cryptography , 1997, CRYPTO.

[14]  Mihir Bellare,et al.  Relations among Notions of Security for Public-Key Encryption Schemes , 1998, IACR Cryptol. ePrint Arch..

[15]  Claus-Peter Schnorr,et al.  Attacking the Chor-Rivest Cryptosystem by Improved Lattice Reduction , 1995, EUROCRYPT.

[16]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[17]  G. A. Orton,et al.  A Multiple-Iterated Trapdoor for Dense Compact Knapsacks , 1994, EUROCRYPT.

[18]  Martin E. Hellman,et al.  Hiding information and signatures in trapdoor knapsacks , 1978, IEEE Trans. Inf. Theory.

[19]  Daniel R. Simon On the Power of Quantum Computation , 1997, SIAM J. Comput..

[20]  Tatsuaki Okamoto,et al.  How to Enhance the Security of Public-Key Encryption at Minimum Cost , 1999, Public Key Cryptography.

[21]  Mihir Bellare,et al.  Optimal Asymmetric Encryption-How to Encrypt with RSA , 1995 .

[22]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[23]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[24]  Dominic Mayers,et al.  Quantum Key Distribution and String Oblivious Transfer in Noisy Channels , 1996, CRYPTO.

[25]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[26]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[27]  Gilles Brassard,et al.  Quantum Bit Commitment and Coin Tossing Protocols , 1990, CRYPTO.

[28]  Ronald L. Rivest,et al.  A Knapsack Type Public Key Cryptosystem Based On Arithmetic in Finite Fields , 1984, CRYPTO.

[29]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[30]  Gilles Brassard,et al.  Practical Quantum Oblivious Transfer , 1991, CRYPTO.

[31]  Thomas M. Cover,et al.  Enumerative source encoding , 1973, IEEE Trans. Inf. Theory.

[32]  Silvio Micali,et al.  Probabilistic Encryption , 1984, J. Comput. Syst. Sci..

[33]  Louis Salvail,et al.  Perfectly Concealing Quantum Bit Commitment from any Quantum One-Way Permutation , 2000, EUROCRYPT.

[34]  Jacques Stern,et al.  A New Public-Key Cryptosystem , 1997, EUROCRYPT.

[35]  Mihir Bellare,et al.  Entity Authentication and Key Distribution , 1993, CRYPTO.