New piezoelectric substrates for SAW devices

Recent developments in single crystal piezoelectric materials have focused on the search for "ideal" materials with zero temperature coefficient of frequency orientations featuring jointly high piezoelectric coupling, high intrinsic Q, zero power flow angle, and minimized diffraction effects. In addition, the desired materials should have no low temperature phase transitions, and a physical chemistry conducive to repeatable, low cost growth and wafer scale device production. As difficult as it might seem to find such "ideal" materials, three completely different but strong candidate materials have emerged recently: the quartz homeotype gallium orthophosphate, the quartz isotype calcium gallo-germanates (langasite, langanite, langatate, etc.), and diomignite (lithium tetraborate). The current state-of-the-art and prospects for future development of these materials are considered.

[1]  S. Nagel,et al.  Crystal Growth of Li2B4O7 , 1977 .

[2]  S. Haussühl,et al.  Electrooptical coefficients and temperature and pressure derivatives of the elastic constants of tetragonal Li2B4O7 , 1989 .

[3]  A. A. Kaminskii,et al.  Investigation of trigonal (La1−xNdx)3Ga5SiO14 crystals. I. Growth and optical Properties , 1983 .

[4]  I. M. Young,et al.  The growth and growth mechanism of lithium tetraborate , 1982 .

[5]  S. Uda,et al.  Analysis of Surface Acoustic Wave Properties of the Rotated Y-cut Langasite Substrate , 1999 .

[6]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[7]  Hitoshi Suzuki,et al.  SAW Propagation Characteristics on Li2B4O7 , 1983 .

[8]  H. Orihara,et al.  Dielectric properties of hydrothermally grown gallium orthophosphate single crystals , 1990 .

[9]  F. W. Ainger,et al.  Lithium tetraborate: a new temperature-compensated SAW substrate material , 1981 .

[10]  H. Satoh,et al.  Surface Acoustics Wave Propagation Characteristics on a Langasite Crystal Plate , 1997 .

[11]  L. A. Shabanova,et al.  Temperature Dependence of Electromechanical Properties of LGS Crystals , 1986, December 16.

[12]  Y. Ishibashi,et al.  Raman scattering study of lithium diborate (Li2B4O7) single crystal , 1990 .

[13]  Alain Ibanez,et al.  Structure Deformations and Existence of the α-β Transition in MXO4 Quartz-like Materials , 1994 .

[14]  S. Hirano,et al.  Physical properties of hydrothermally grown gallium orthophosphate single crystals , 1990 .

[15]  T. Shiosaki,et al.  Elastic, Piezoelectric, Acousto-Optic and Electro-Optic Properties of Li2B4O7 , 1985 .

[16]  K. Byrappa,et al.  Phases and crystallization in the system Li_2O–B_2O_3–H_2O under hydrothermal conditions , 1993 .

[17]  Jiang Jianhua,et al.  Synchrotron Radiation Topographic Study on the Dislocations in Lithium Tetraborate Crystal , 1991 .

[18]  T. Katsumata,et al.  Non-wetting container material for growing lithium and barium borate crystals , 1992 .

[19]  R. Whatmore,et al.  Pyroelectric and Piezoelectric Properties of Lithium Tetraborate Single Crystal , 1985 .

[20]  J. Détaint,et al.  Bulk wave propagation and energy trapping in the new thermally compensated materials with trigonal symmetry , 1994, Proceedings of IEEE 48th Annual Symposium on Frequency Control.

[21]  Yicheng Lu,et al.  Pure-mode measurements of Li/sub 2/B/sub 4/O/sub 7/ material properties , 1994, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[22]  S. Fan,et al.  Accelerated crucible rotation technique: Bridgman growth of Li2B4O7 single crystal and simulation of the flows in the crucible , 1993 .

[23]  A. Kaminskii,et al.  Investigation of trigonal (La1-xNdx)3Ga5SiO14 crystals. II. Spectral laser and electromechanical properties , 1983 .

[24]  B. James,et al.  The pressure and temperature dependences of the elastic behaviour of lithium tetraborate , 1990 .

[25]  Li Jin-long,et al.  Bridgman growth of Li2B4O7 crystals , 1990 .

[26]  H. Imagawa,et al.  Growth and characterization of Li2B407 single crystals grown by novel Bridgman technique using a graphite container , 1993 .

[27]  W. Soluch Measurements of Bleustein-Gulyaev waves in Li/sub 2/B/sub 4/O/sub 7/ crystal , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[28]  J. Détaint,et al.  A quartz-like material : gallium phosphate (GaPO4) ; crystal growth and characterization , 1993 .

[29]  K. Byrappa,et al.  Hydrothermal synthesis and morphology of lithium tetraborate crystals , 1993 .

[30]  Andrzej Majchrowski,et al.  Czochralski growth of lithium tetraborate single crystals , 1991 .

[31]  A. Goiffon,et al.  Etude comparée à diverses températures (173, 293 et 373°K) des structures de type quartz α des phases MIIIXVO4 (MIII = Al, Ga et XV = P, As) , 1986 .

[32]  K. Byrappa,et al.  Hydrothermal synthesis and characterization of piezoelectric lithium tetraborate, Li2B4O7, crystals , 1992 .

[33]  Y. Ebata,et al.  Growth and Properties of Li2B4O7 Single Crystal for SAW Device Applications , 1983 .

[34]  M. Zolensky,et al.  Diomignite; natural Li 2 B 4 O 7 from the Tanco Pegmatite, Bernic Lake, Manitoba , 1987 .

[35]  K. S. Aleksandrov,et al.  Non-linear piezoelectricity in La3Ga5SiO14 piezoelectric single crystal , 1992 .

[36]  D. Somerford,et al.  Low-temperature elastic anomalies in lithium tetraborate , 1989 .