ZnO nanowires for solar cells: a comprehensive review

As an abundant and non-toxic wide band gap semiconductor with a high electron mobility, ZnO in the form of nanowires (NWs) has emerged as an important electron transporting material in a vast number of nanostructured solar cells. ZnO NWs are grown by low-cost chemical deposition techniques and their integration into solar cells presents, in principle, significant advantages including efficient optical absorption through light trapping phenomena and enhanced charge carrier separation and collection. However, they also raise some significant issues related to the control of the interface properties and to the technological integration. The present review is intended to report a detailed analysis of the state-of-the-art of all types of nanostructured solar cells integrating ZnO NWs, including extremely thin absorber solar cells, quantum dot solar cells, dye-sensitized solar cells, organic and hybrid solar cells, as well as halide perovskite-based solar cells.

[1]  Ping Xu,et al.  A strategy toward air-stable and high-performance ZnO-based perovskite solar cells fabricated under ambient conditions , 2018 .

[2]  E. Aydil,et al.  Nanowire-quantum-dot solar cells and the influence of nanowire length on the charge collection efficiency , 2009 .

[3]  S. Seok,et al.  Efficient Sb2S3‐Sensitized Solar Cells Via Single‐Step Deposition of Sb2S3 Using S/Sb‐Ratio‐Controlled SbCl3‐Thiourea Complex Solution , 2015 .

[4]  J. Anta,et al.  ZnO/ZnO Core–Shell Nanowire Array Electrodes: Blocking of Recombination and Impressive Enhancement of Photovoltage in Dye-Sensitized Solar Cells , 2013 .

[5]  V. Consonni,et al.  Effects of Hexamethylenetetramine on the Nucleation and Radial Growth of ZnO Nanowires by Chemical Bath Deposition , 2016 .

[6]  Lukas Schmidt-Mende,et al.  Nanostructured Organic and Hybrid Solar Cells , 2011, Advanced materials.

[7]  Yi Luo,et al.  Remarkable enhancement of photovoltaic performance of ZnO/CdTe core–shell nanorod array solar cells through interface passivation with a TiO2 layer , 2015 .

[8]  W. Su,et al.  Effects of metal-free conjugated oligomer as a surface modifier in hybrid polymer/ZnO solar cells , 2012 .

[9]  M. Lux‐Steiner,et al.  ZnO-nanorod arrays for solar cells with extremely thin sulfidic absorber , 2009 .

[10]  Y. Loo,et al.  Donor‐Acceptor Interfacial Interactions Dominate Device Performance in Hybrid P3HT‐ZnO Nanowire‐Array Solar Cells , 2014 .

[11]  Claude Lévy-Clément,et al.  ZnO/CdTe/CuSCN, a promising heterostructure to act as inorganic eta-solar cell , 2005 .

[12]  F. Krebs,et al.  Comparison of two types of vertically aligned ZnO NRs for highly efficient polymer solar cells , 2013 .

[13]  Sigurd Wagner,et al.  Thin film semiconductor deposition on free-standing ZnO columns , 2000 .

[14]  D. Carroll,et al.  Thickness dependence of the MoO3 blocking layers on ZnO nanorod-inverted organic photovoltaic devices , 2011 .

[15]  Barbara K. Hughes,et al.  Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion. , 2010, Nano letters.

[16]  S. Jokela,et al.  Defects in ZnO , 2009 .

[17]  Martha Ch. Lux-Steiner,et al.  Influence of the local absorber layer thickness on the performance of ZnO nanorod solar cells , 2008 .

[18]  M. Ghoranneviss,et al.  Core–shell solar cell fabrication using heterostructure of ZnO-nanowires arrays decorated with sputtered CdTe-nanoparticles , 2018 .

[19]  M. Bawendi,et al.  Dimension- and Surface-Tailored ZnO Nanowires Enhance Charge Collection in Quantum Dot Photovoltaic Devices , 2018 .

[20]  Masayuki Nagai,et al.  Solution-Derived ZnO Nanowire Array Film as Photoelectrode in Dye-Sensitized Solar Cells , 2007 .

[21]  Gang Li,et al.  Recent trends in polymer tandem solar cells research , 2013 .

[22]  E. Aydil,et al.  Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells , 2006 .

[23]  H. Snaith,et al.  The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2-Based Solar Cells. , 2014, The journal of physical chemistry letters.

[24]  Aram Amassian,et al.  16.1% Efficient Hysteresis‐Free Mesostructured Perovskite Solar Cells Based on Synergistically Improved ZnO Nanorod Arrays , 2015 .

[25]  Muhamad Mat Salleh,et al.  The 3rd ISESCO International Workshop and Conference On Nanotechnology 2012 (IWCN2012) , 2013 .

[26]  H. Hillhouse,et al.  The Shockley-Queisser limit and practical limits of nanostructured photovoltaics , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[27]  Anders Hagfeldt,et al.  Dye-sensitized solar cells. , 2010, Chemical reviews.

[28]  Jeremy N. Munday,et al.  The generalized Shockley-Queisser limit for nanostructured solar cells , 2015, Scientific Reports.

[29]  Guozhong Cao,et al.  ZnO Nanostructures for Dye‐Sensitized Solar Cells , 2009 .

[30]  Jing-Shun Huang,et al.  Solution-processed vanadium oxide as an anode interlayer for inverted polymer solar cells hybridized with ZnO nanorods , 2009 .

[31]  J. S. Lee,et al.  Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion , 2009 .

[32]  A. Kaminski-Cachopo,et al.  Improvement of the physical properties of ZnO/CdTe core-shell nanowire arrays by CdCl2 heat treatment for solar cells , 2014, Nanoscale Research Letters.

[33]  G. Cao,et al.  ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells. , 2013, Nanoscale.

[34]  A. Nozik Quantum dot solar cells , 2002 .

[35]  H. Sue,et al.  ZnO and conjugated polymer bulk heterojunction solar cells containing ZnO nanorod photoanode , 2011, Nanotechnology.

[36]  Ziyang Hu,et al.  Influence of ZnO interlayer on the performance of inverted organic photovoltaic device , 2011 .

[37]  V. Consonni,et al.  Controlling the Structural Properties of Single Step, Dip Coated ZnO Seed Layers for Growing Perfectly Aligned Nanowire Arrays , 2015 .

[38]  P. Falaras,et al.  Avoiding ambient air and light induced degradation in high-efficiency polymer solar cells by the use of hydrogen-doped zinc oxide as electron extraction material , 2017 .

[39]  D. Kuang,et al.  Hierarchical macroporous Zn(2)SnO(4)-ZnO nanorod composite photoelectrodes for efficient CdS/CdSe quantum dot co-sensitized solar cells. , 2013, ACS applied materials & interfaces.

[40]  M. Abdellah,et al.  Effect of metal oxide morphology on electron injection from CdSe quantum dots to ZnO , 2013 .

[41]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[42]  K. Sun,et al.  Perovskites for photovoltaics: a combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites , 2015 .

[43]  Zhiming Wu,et al.  ZnO/ZnSe type II core-shell nanowire array solar cell , 2012 .

[44]  G. Cao,et al.  Efficiency Enhancement of Quantum Dot Sensitized TiO2/ZnO Nanorod Arrays Solar Cells by Plasmonic Ag Nanoparticles. , 2016, ACS applied materials & interfaces.

[45]  H. Yanagi,et al.  Electrochemical deposition of zinc oxide nanorods for hybrid solar cells , 2015 .

[46]  Ping Lu,et al.  Optimization of ZnO Nanorod Array Morphology for Hybrid Photovoltaic Devices , 2009 .

[47]  Mohammad Khaja Nazeeruddin,et al.  Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency , 2014, Nature Communications.

[48]  Li-ping Zhu,et al.  ZnO/TiO2 core–shell nanowire arrays for enhanced dye-sensitized solar cell efficiency , 2013 .

[49]  C. Lévy‐Clément,et al.  Optimization of the design of extremely thin absorber solar cells based on electrodeposited ZnO nanowires. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[50]  Jürgen H. Werner,et al.  Flexible solar cells for clothing , 2006 .

[51]  M. Abdellah,et al.  Quantum dot photodegradation due to CdSe-ZnO charge transfer: Transient absorption study , 2012 .

[52]  K. Ho,et al.  ZnO nanowire/nanoparticles composite films for the photoanodes of quantum dot-sensitized solar cells , 2013 .

[53]  Jing Xu,et al.  Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification. , 2014, Chemical communications.

[54]  Anders Hagfeldt,et al.  PES Studies of Ru(dcbpyH2)2(NCS)2 Adsorption on Nanostructured ZnO for Solar Cell Applications , 2002 .

[55]  N. Zheng,et al.  Efficient, Hysteresis‐Free, and Stable Perovskite Solar Cells with ZnO as Electron‐Transport Layer: Effect of Surface Passivation , 2018, Advanced materials.

[56]  T. Bendikov,et al.  Uniform Coating of Light-Absorbing Semiconductors by Chemical Bath Deposition on Sulfide-Treated ZnO Nanorods , 2010 .

[57]  Amphiphilic acids as co-adsorbents of metal-free organic dyes for the efficient sensitization of nanostructured photoelectrode , 2012 .

[58]  M. Urien,et al.  Effects of ZnO film growth route and nanostructure on electron transport and recombination in dye-sensitized solar cells , 2013 .

[59]  J. Durrant,et al.  Acoustic Enhancement of Polymer/ZnO Nanorod Photovoltaic Device Performance , 2014, Advanced materials.

[60]  R. Mane,et al.  Development of highly transparent seedless ZnO nanorods engineered for inverted polymer solar cells. , 2014, Nanoscale.

[61]  K. Prabakar,et al.  TiO2 thin film encapsulated ZnO nanorod and nanoflower dye sensitized solar cells , 2011 .

[62]  M. Burgelman,et al.  Electrical characterization of all-layers-sprayed solar cell based on ZnO nanorods and extremely thin CIS absorber , 2013 .

[63]  P. Frantsuzov,et al.  Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles , 2010, Proceedings of the National Academy of Sciences.

[64]  W. Su,et al.  Enhanced photocurrent and stability of inverted polymer/ZnO-nanorod solar cells by 3-hydroxyflavone additive , 2012 .

[65]  W. Jaegermann,et al.  Ultrahigh vacuum preparation and characterization of TiO2/CdTe interfaces: Electrical properties and implications for solar cells , 2002 .

[66]  M. Salleh,et al.  Enhancement of ZnO nanorod arrays-based inverted type hybrid organic solar cell using spin-coated Eosin-Y , 2013 .

[67]  Zhong Lin Wang,et al.  Enhanced P3HT/ZnO Nanowire Array Solar Cells by Pyro-phototronic Effect. , 2016, ACS nano.

[68]  Chunhui Huang,et al.  ZnO nanorod arrays with different densities in hybrid photovoltaic devices: Fabrication and the density effect on performance , 2011 .

[69]  M. Seol,et al.  Novel nanowire array based highly efficient quantum dot sensitized solar cell. , 2010, Chemical communications.

[70]  S. Haque,et al.  PbS and CdS Quantum Dot‐Sensitized Solid‐State Solar Cells: “Old Concepts, New Results” , 2009 .

[71]  T. Tatsuma,et al.  Efficiency Enhancement of PbS Quantum Dot/ZnO Nanowire Bulk-Heterojunction Solar Cells by Plasmonic Silver Nanocubes. , 2015, ACS nano.

[72]  J. Nelson,et al.  P-type semiconductor surfactant modified zinc oxide nanorods for hybrid bulk heterojunction solar cells , 2016 .

[73]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[74]  J. Hsu,et al.  Open-Circuit Voltage Improvement in Hybrid ZnO–Polymer Photovoltaic Devices With Oxide Engineering , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[75]  Q. Jia,et al.  Tuning of defects in ZnO nanorod arrays used in bulk heterojunction solar cells , 2012, Nanoscale Research Letters.

[76]  T. Nagata,et al.  Photoelectron spectroscopic study on band alignment of poly(3-hexylthiophene-2,5-diyl)/polar-ZnO heterointerface , 2014 .

[77]  G. Cao,et al.  ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells , 2010 .

[78]  Samuel M. Nicaise,et al.  Dimensional Tailoring of Hydrothermally Grown Zinc Oxide Nanowire Arrays. , 2016, Nano letters.

[79]  Dong-Won Kang,et al.  Improved interface of ZnO/CH3NH3PbI3 by a dynamic spin-coating process for efficient perovskite solar cells , 2017 .

[80]  Emilio Palomares,et al.  Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. , 2003, Journal of the American Chemical Society.

[81]  J. Aranovich,et al.  Photovoltaic properties of ZnO/CdTe heterojunctions prepared by spray pyrolysis , 1978 .

[82]  R. Könenkamp,et al.  Solar cell with extremely thin absorber on highly structured substrate , 2003 .

[83]  R. Holmes,et al.  Exciton diffusion in organic photovoltaic cells , 2014 .

[84]  Zhiming M. Wang,et al.  Interface engineering of high efficiency perovskite solar cells based on ZnO nanorods using atomic layer deposition , 2017, Nano Research.

[85]  A. Gardchareon,et al.  Efficiency Enhancement of ZnO Dye-sensitized Solar Cells by Modifying Photoelectrode and Counterelectrode , 2015 .

[86]  Kaibo Zheng,et al.  Fast monolayer adsorption and slow energy transfer in CdSe quantum dot sensitized ZnO nanowires. , 2013, The journal of physical chemistry. A.

[87]  Xiao-hua Ma,et al.  Passivating ZnO Surface States by C60 Pyrrolidine Tris-Acid for Hybrid Solar Cells Based on Poly(3-hexylthiophene)/ZnO Nanorod Arrays , 2017, Polymers.

[88]  Andreas Schüler,et al.  Nanostructured materials for solar energy conversion , 2005 .

[89]  J. D’Haen,et al.  Tuning the dimensions of ZnO nanorod arrays for application in hybrid photovoltaics. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[90]  M. Salleh,et al.  Improvement of inverted type organic solar cells performance by incorporating Mg dopant into hydrothermally grown ZnO nanorod arrays , 2014 .

[91]  X. Chen,et al.  Hole-conductor-free perovskite solar cells with carbon counter electrodes based on ZnO nanorod arrays. , 2016, Physical chemistry chemical physics : PCCP.

[92]  Nam-Gyu Park,et al.  11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System , 2014 .

[93]  Ching-Fuh Lin,et al.  Enhancing performance of inverted polymer solar cells using two-growth ZnO nanorods , 2014 .

[94]  M. Matsumura,et al.  Removal of organic contaminants from the surface of ZnO nanorods for organic/inorganic hybrid photovoltaics by using photocatalytic reaction , 2015 .

[95]  T. Pauporté,et al.  From nanowires to hierarchical structures of template-free electrodeposited ZnO for efficient dye-sensitized solar cells , 2011 .

[96]  G. Du,et al.  Dual functional YVO4:Eu3+,Bi3+@SiO2 submicron-sized core–shell particles for dye-sensitized solar cells: Light scattering and downconversion , 2014 .

[97]  N. Boukos,et al.  Improved Stability of Polymer Solar Cells in Ambient Air via Atomic Layer Deposition of Ultrathin Dielectric Layers , 2017 .

[98]  X. Cao,et al.  Decoration of Textured ZnO Nanowires Array with CdTe Quantum Dots: Enhanced Light-Trapping Effect and Photogenerated Charge Separation , 2008 .

[99]  Sean E. Shaheen,et al.  Effect of Polymer Processing on the Performance of Poly(3-hexylthiophene)/ZnO Nanorod Photovoltaic Devices , 2007 .

[100]  M. Zanuccoli,et al.  Light absorption processes and optimization of ZnO/CdTe core–shell nanowire arrays for nanostructured solar cells , 2015, Nanotechnology.

[101]  Aram Amassian,et al.  Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. , 2011, Nature materials.

[102]  F. Mohamad,et al.  Electrodeposited ZnO-nanowire/Cu₂O photovoltaic device with highly resistive ZnO intermediate layer. , 2014, ACS applied materials & interfaces.

[103]  Yang Yang,et al.  Low-Bandgap Near-IR Conjugated Polymers/Molecules for Organic Electronics. , 2015, Chemical reviews.

[104]  Uwe Rau,et al.  Modeling extremely thin absorber solar cells for optimized design , 2004 .

[105]  Huang-Chung Cheng,et al.  A Novel Coaxial-Structured Amorphous-Silicon p-i-n Solar Cell With Al-Doped ZnO Nanowires , 2011, IEEE Electron Device Letters.

[106]  Hiroshi Segawa,et al.  PbS colloidal quantum dot/ZnO‐based bulk‐heterojunction solar cells with high stability under continuous light soaking , 2014 .

[107]  C. Kelch,et al.  Contacts to a solar cell with extremely thin CdTe absorber , 2001 .

[108]  V. Sundström,et al.  Electron transfer in quantum-dot-sensitized ZnO nanowires: ultrafast time-resolved absorption and terahertz study. , 2012, Journal of the American Chemical Society.

[109]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[110]  L. Schmidt‐Mende,et al.  ZnO - nanostructures, defects, and devices , 2007 .

[111]  V. Mikli,et al.  Sb2S3 grown by ultrasonic spray pyrolysis and its application in a hybrid solar cell , 2016, Beilstein journal of nanotechnology.

[112]  Yang Yang,et al.  An Efficient Triple‐Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11% , 2014, Advanced materials.

[113]  Ching-Fuh Lin,et al.  Enhancing performance of organic–inorganic hybrid solar cells using a fullerene interlayer from all-solution processing , 2010 .

[114]  Joel Jean,et al.  ZnO Nanowire Arrays for Enhanced Photocurrent in PbS Quantum Dot Solar Cells , 2013, Advanced materials.

[115]  Kai Wang,et al.  Direct Growth of Highly Mismatched Type II ZnO/ZnSe Core/Shell Nanowire Arrays on Transparent Conducting Oxide Substrates for Solar Cell Applications , 2008 .

[116]  U. Lemmer,et al.  Zinc oxide nanorod arrays hydrothermally grown on a highly conductive polymer for inverted polymer solar cells , 2012 .

[117]  F. Giustino,et al.  Ideal Energy‐Level Alignment at the ZnO/P3HT Photovoltaic Interface , 2012 .

[118]  Jonathan D. Major,et al.  Development of ZnO nanowire based CdTe thin film solar cells , 2017 .

[119]  Guozhong Cao,et al.  ZnO cathode buffer layers for inverted polymer solar cells , 2015 .

[120]  J. Luther,et al.  Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. , 2010, Chemical reviews.

[121]  J. Nelson,et al.  Control of Photocurrent Generation in Polymer/ZnO Nanorod Solar Cells by Using a Solution-Processed TiO2 Overlayer , 2010 .

[122]  Chunhui Huang,et al.  Organic/inorganic hybrid solar cells with vertically oriented ZnO nanowires , 2009 .

[123]  F. Fabregat‐Santiago,et al.  Enhanced Carrier Transport Distance in Colloidal PbS Quantum-Dot-Based Solar Cells Using ZnO Nanowires , 2015 .

[124]  Lin-wang Wang,et al.  "Quantum coaxial cables" for solar energy harvesting. , 2007, Nano letters.

[125]  R. Mane,et al.  Co-functionalized organic/inorganic hybrid ZnO nanorods as electron transporting layers for inverted organic solar cells. , 2016, Nanoscale.

[126]  Xue Chen,et al.  Arrays of ZnO/Zn(x)Cd(1-x)Se nanocables: band gap engineering and photovoltaic applications. , 2011, Nano letters.

[127]  Xiaohang Chen,et al.  An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires , 2011 .

[128]  T. Nagata,et al.  Photoelectron spectroscopic study of band alignment of polymer/ZnO photovoltaic device structure , 2013 .

[129]  Md. K. Nazeeruddin,et al.  High-performance nanostructured inorganic-organic heterojunction solar cells. , 2010, Nano letters.

[130]  S. Dunn,et al.  Extremely thin absorber solar cells based on nanostructured semiconductors , 2011 .

[131]  Yue Zhang,et al.  Enhanced power conversion efficiency of CdS quantum dot sensitized solar cells with ZnO nanowire arrays as the photoanodes , 2015 .

[132]  Yichun Liu,et al.  Bending-durable colloidal quantum dot solar cell using a ZnO nanowire array as a three-dimensional electron transport layer , 2017 .

[133]  Nripan Mathews,et al.  Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. , 2013, Chemical communications.

[134]  Juan Bisquert,et al.  Breakthroughs in the Development of Semiconductor-Sensitized Solar Cells , 2010 .

[135]  V. Consonni,et al.  Critical Nucleation Effects on the Structural Relationship Between ZnO Seed Layer and Nanowires , 2012 .

[136]  S. Yoshikawa,et al.  Effects of the morphology of nanostructured ZnO and interface modification on the device configuration and charge transport of ZnO/polymer hybrid solar cells. , 2013, Physical chemistry chemical physics : PCCP.

[137]  W. Zhou,et al.  Dye-sensitized solar cells based on nanoparticle-decorated ZnO/SnO2 core/shell nanoneedle arrays , 2014 .

[138]  D. Cahen,et al.  Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells , 2006 .

[139]  P. Galtier,et al.  Synthesis and characterization of core–shell ZnO/ZnSe nanowires grown by MOCVD , 2013 .

[140]  A. Boukai,et al.  Oligo- and polythiophene/ZnO hybrid nanowire solar cells. , 2010, Nano letters (Print).

[141]  W. E. Collins,et al.  Enhanced photoresponse in ZnO nanowires decorated with CdTe quantum dot , 2007 .

[142]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[143]  Y. Yi,et al.  Interface Formation Between ZnO Nanorod Arrays and Polymers (PCBM and P3HT) for Organic Solar Cells , 2012 .

[144]  Samir Elouatik,et al.  Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal Raman imaging. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[145]  N. Khalifa,et al.  Synthesis of core/shell ZnO/ZnSe nanowires using novel low cost two-steps electrochemical deposition technique , 2015 .

[146]  Kurt D. Benkstein,et al.  Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells , 2003 .

[147]  Yi Cui,et al.  Nanowire Solar Cells , 2011 .

[148]  Zhiqiang Gao,et al.  Blocking reactions between indium-tin oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer , 2002 .

[149]  G. Cao,et al.  High performance of Mn-doped CdSe quantum dot sensitized solar cells based on the vertical ZnO nanorod arrays , 2016 .

[150]  D. Fitzmaurice,et al.  Visible Light Sensitization by cis-Bis(thiocyanato)bis(2,2"-bipyridyl-4,4"-dicarboxylato)ruthenium(II) of a Transparent Nanocrystalline ZnO Film Prepared by Sol-Gel Techniques , 1994 .

[151]  J. Bude,et al.  Thresholds of impact ionization in semiconductors , 1992 .

[152]  T. Miyasaka,et al.  Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber , 2017 .

[153]  Erik M. J. Johansson,et al.  Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. , 2013, Nanoscale.

[154]  Aleksandra Radenovic,et al.  ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. , 2006, The journal of physical chemistry. B.

[155]  M. Abdellah,et al.  Simultaneous Creation and Recovery of Trap States on Quantum Dots in a Photoirradiated CdSe–ZnO System , 2014 .

[156]  E. Uchaker,et al.  Hierarchically structured ZnO nanorods-nanosheets for improved quantum-dot-sensitized solar cells. , 2014, ACS applied materials & interfaces.

[157]  P. Kamat Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics. , 2013, The journal of physical chemistry letters.

[158]  Gang Li,et al.  Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells , 2009 .

[159]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[160]  Ching-Fuh Lin,et al.  Lengthening the polymer solidification time to improve the performance of polymer/ZnO nanorod hybrid solar cells , 2009 .

[161]  Ke Gao,et al.  Solution-processed organic tandem solar cells with power conversion efficiencies >12% , 2016, Nature Photonics.

[162]  Gang Li,et al.  High‐Performance Organic Bulk‐Heterojunction Solar Cells Based on Multiple‐Donor or Multiple‐Acceptor Components , 2018, Advanced materials.

[163]  Eray S. Aydil,et al.  Nanowire-based dye-sensitized solar cells , 2005 .

[164]  M. H. Jumali,et al.  A Simple Approach Low-Temperature Solution Process for Preparation of Bismuth-Doped ZnO Nanorods and Its Application in Hybrid Solar Cells , 2016 .

[165]  Donal D. C. Bradley,et al.  Hybrid polymer/metal oxide solar cells based on ZnO columnar structures , 2006 .

[166]  R. Könenkamp,et al.  Nanowire–quantum‐dot–polymer solar cell , 2008 .

[167]  Performance of polymer/ZnO hybrid photovoltaic devices determined by reaction time for oriented ZnO nanorod growth , 2011 .

[168]  Yong Ding,et al.  Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array. , 2015, ACS nano.

[169]  Zhong Lin Wang,et al.  One-dimensional ZnO nanostructures: Solution growth and functional properties , 2011 .

[170]  H. Boyen,et al.  Generalized approach to the description of recombination kinetics in bulk heterojunction solar cells—extending from fully organic to hybrid solar cells , 2012 .

[171]  M. Z. Sahdan,et al.  A novel fabrication of MEH-PPV/Al:ZnO nanorod arrays based ordered bulk heterojunction hybrid solar cells , 2013 .

[172]  Edward H Sargent,et al.  Charge-extraction strategies for colloidal quantum dot photovoltaics. , 2014, Nature materials.

[173]  Wen-Sheng Chang,et al.  Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: true efficiency for water splitting. , 2010, Angewandte Chemie.

[174]  T. Bora,et al.  Zinc oxide–zinc stannate core–shell nanorod arrays for CdS quantum dot sensitized solar cells , 2012 .

[175]  Rattanavoravipa Thitima,et al.  Efficient electron transfers in ZnO nanorod arrays with N719 dye for hybrid solar cells , 2009 .

[176]  J. Durrant,et al.  The effect of Al2O3 barrier layers in TiO2/dye/CuSCN photovoltaic cells explored by recombination and DOS characterization using transient photovoltage measurements. , 2005, The journal of physical chemistry. B.

[177]  T. Kubo,et al.  Solution-Processed Short-Wave Infrared PbS Colloidal Quantum Dot/ZnO Nanowire Solar Cells Giving High Open-Circuit Voltage , 2017 .

[178]  G. Cao,et al.  Effects of Dye Loading Conditions on the Energy Conversion Efficiency of ZnO and TiO2 Dye-Sensitized Solar Cells , 2007 .

[179]  Th. Dittrich,et al.  Current-voltage characteristics and transport mechanism of solar cells based on ZnO nanorods/In2S3∕CuSCN , 2008 .

[180]  Yaqiong Li,et al.  ZnO-CuO core-shell heterostructure for improving the efficiency of ZnO-based dye-sensitized solar cells , 2017 .

[181]  L. Vayssieres Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions , 2003 .

[182]  J. Bisquert,et al.  High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation. , 2015, Nanoscale.

[183]  S. Li,et al.  Polymer–metal-oxide hybrid solar cells , 2013 .

[184]  E. Aydil,et al.  Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires , 2006 .

[185]  Dong-Joo Kim,et al.  Flexible organic/inorganic hybrid solar cells based on conjugated polymer and ZnO nanorod array , 2012 .

[186]  Jiang Tang,et al.  Sb2S3 Solar Cells , 2018 .

[187]  A. Janotti,et al.  Native point defects in ZnO , 2007 .

[188]  V. Walle,et al.  Hydrogen as a cause of doping in zinc oxide , 2000 .

[189]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[190]  G. Goh,et al.  Low temperature grown ZnO@TiO2 core shell nanorod arrays for dye sensitized solar cell application , 2014 .

[191]  N. S. Sariciftci,et al.  Substrate-Oriented Nanorod Scaffolds in Polymer–Fullerene Bulk Heterojunction Solar Cells , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[192]  M.J.A. de Voigt,et al.  Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes , 2000 .

[193]  R. Hamers,et al.  Sulfide Treatment of ZnO Single Crystals and Nanorods and the Effect on P3HT-ZnO Photovoltaic Device Properties , 2009 .

[194]  R. Katoh,et al.  Electron Injection Efficiency from Excited N3 into Nanocrystalline ZnO Films: Effect of (N3−Zn2+) Aggregate Formation , 2003 .

[195]  M. Lux‐Steiner,et al.  Hybrid solar cells with ZnO-nanorods and dry processed small molecule absorber , 2014 .

[196]  M. M. Salleh,et al.  Solution-processed Ga-doped ZnO nanorod arrays as electron acceptors in organic solar cells. , 2014, ACS applied materials & interfaces.

[197]  W. Lei,et al.  Ligand capping effect for dye solar cells with a CdSe quantum dot sensitized ZnO nanorod photoanode. , 2010, Optics express.

[198]  Peidong Yang,et al.  ZnO-TiO2 Core-Shell Nanorod/P3HT Solar Cells , 2007 .

[199]  Zhong Lin Wang Nanostructures of zinc oxide , 2004 .

[200]  Soo‐Hyoung Lee,et al.  Work-Function and Surface Energy Tunable Cyanoacrylic Acid Small-Molecule Derivative Interlayer on Planar ZnO Nanorods for Improved Organic Photovoltaic Performance. , 2016, ACS applied materials & interfaces.

[201]  E. Fortunato,et al.  Observation of Space Charge Dynamics Inside an All Oxide Based Solar Cell. , 2016, ACS nano.

[202]  Guo-Qiang Lo,et al.  Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode , 2007 .

[203]  Yichun Liu,et al.  Increased open‐circuit voltage of ZnO nanowire/PbS quantum dot bulk heterojunction solar cells with solution‐deposited Mg(OH)2 interlayer , 2016 .

[204]  Tai-Yuan Lin,et al.  Direct evidence of type II band alignment in ZnO nanorods/poly(3-hexylthiophene) heterostructures , 2012 .

[205]  Andrey L Rogach,et al.  Facile solution growth of vertically aligned ZnO nanorods sensitized with aqueous CdS and CdSe quantum dots for photovoltaic applications , 2011, Nanoscale research letters.

[206]  Vaidyanathan Subramanian,et al.  Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. , 2006, Journal of the American Chemical Society.

[207]  R. T. Ross,et al.  Efficiency of hot-carrier solar energy converters , 1982 .

[208]  K. Yoshino,et al.  Effect of ZnO layer on characteristics of conducting polymer/C60 photovoltaic cell , 2004 .

[209]  D. Kuang,et al.  Three-dimensional TiO2/ZnO hybrid array as a heterostructured anode for efficient quantum-dot-sensitized solar cells. , 2015, ACS applied materials & interfaces.

[210]  Xiao Wei Sun,et al.  Co-sensitized quantum dot solar cell based on ZnO nanowire , 2010 .

[211]  Tianfeng Li,et al.  Piezo‐Phototronic Effect Enhanced Flexible Solar Cells Based on n‐ZnO/p‐SnS Core–Shell Nanowire Array , 2016, Advanced science.

[212]  D. Bradley,et al.  Degradation of organic solar cells due to air exposure , 2006 .

[213]  V. Consonni,et al.  ZnO/TiO2/Sb2S3 Core–Shell Nanowire Heterostructure for Extremely Thin Absorber Solar Cells , 2017 .

[214]  Jianbo Gao,et al.  Stability Assessment on a 3% Bilayer PbS/ZnO Quantum Dot Heterojunction Solar Cell , 2010, Advanced materials.

[215]  A. Katty,et al.  A new CdTe/ZnO columnar composite film for Eta-solar cells , 2002 .

[216]  Alex K.-Y. Jen,et al.  A Review on the Development of the Inverted Polymer Solar Cell Architecture , 2010 .

[217]  Zhifeng Liu,et al.  Trilaminar ZnO/ZnS/Sb2S3 nanotube arrays for efficient inorganic–organic hybrid solar cells , 2014 .

[218]  P. Barboux,et al.  Electrochemical Design of Nanostructured ZnO Charge Carrier Layers for Efficient Solid‐State Perovskite‐Sensitized Solar Cells , 2014 .

[219]  A. Djurišić,et al.  Defects in ZnO nanorods prepared by a hydrothermal method. , 2006, The journal of physical chemistry. B.

[220]  Zhigang Yin,et al.  Applications of ZnO in organic and hybrid solar cells , 2011 .

[221]  Prashant V. Kamat,et al.  Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters , 2008 .

[222]  Jian Jiang,et al.  Synthesis of ZnO@TiO2 core–shell long nanowire arrays and their application on dye-sensitized solar cells , 2012 .

[223]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[224]  Ruchuan Liu,et al.  Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells , 2014, Materials.

[225]  C. B. Carter,et al.  Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. , 2007, Nano letters.

[226]  I. Kaiser,et al.  The eta-solar cell with CuInS2: A photovoltaic cell concept using an extremely thin absorber (eta) , 2001 .

[227]  Reuben T. Collins,et al.  Hybrid photovoltaic devices of polymer and ZnO nanofiber composites , 2006 .

[228]  M. Grätzel Dye-sensitized solar cells , 2003 .

[229]  D. Bellet,et al.  Synthesis and physical properties of ZnO/CdTe core shell nanowires grown by low-cost deposition methods , 2011 .

[230]  S. Shaheen,et al.  Effect of ZnO Processing on the Photovoltage of ZnO/Poly(3-hexylthiophene) Solar Cells , 2008 .

[231]  U. Paik,et al.  High Open Circuit Voltage Quantum Dot Sensitized Solar Cells Manufactured with ZnO Nanowire Arrays and Si/ZnO Branched Hierarchical Structures , 2011 .

[232]  S. Ramakrishna,et al.  Electrospun ZnO nanowire plantations in the electron transport layer for high-efficiency inverted organic solar cells. , 2013, ACS applied materials & interfaces.

[233]  Daniel Hofstetter,et al.  ZnO Devices and Applications: A Review of Current Status and Future Prospects , 2010, Proceedings of the IEEE.

[234]  Kuan-Ting Kuo,et al.  Core-shell CuInS2/ZnS quantum dots assembled on short ZnO nanowires with enhanced photo-conversion efficiency , 2009 .

[235]  S. Shaheen,et al.  The Effect of Atmosphere and ZnO Morphology on the Performance of Hybrid Poly(3-hexylthiophene)/ZnO Nanofiber Photovoltaic Devices , 2007 .

[236]  Di Gao,et al.  Multilayer assembly of nanowire arrays for dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[237]  Zhongming Zeng,et al.  Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core/shell nanowire arrays , 2010 .

[238]  Xi‐Wen Du,et al.  Improve photo-electron conversion efficiency of ZnO/CdS coaxial nanorods by p-type CdTe coating , 2012, Nanotechnology.

[239]  S. Ogale,et al.  Chemical bath deposition of CdS quantum dots on vertically aligned ZnO nanorods for quantum dots-sensitized solar cells , 2009 .

[240]  Kazuhito Hashimoto,et al.  Efficient Charge Collection with ZnO Nanorod Array in Hybrid Photovoltaic Devices , 2007 .

[241]  P. Blom,et al.  Exciton diffusion in organic semiconductors , 2015 .

[242]  Jie Zhang,et al.  Effects of Oxide Contact Layer on the Preparation and Properties of CH3NH3PbI3 for Perovskite Solar Cell Application , 2015 .

[243]  R. Mane,et al.  Photosensitization of ZnO nanowire-based electrodes using one-step hydrothermally synthesized CdSe/CdS (core/shell) sensitizer , 2016 .

[244]  Marco Califano,et al.  Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals. , 2011, ACS nano.

[245]  Margaret A. K. Ryan,et al.  Fabrication and characterization of ZnO nanowires/CdSe/CuSCN eta-solar cell , 2006 .

[246]  D. Smilgies,et al.  Sputtered ZnO seed layer enhances photovoltaic behavior in hybrid ZnO/P3HT solar cells , 2013 .

[247]  H. Boyen,et al.  Relation between Morphology and Recombination Kinetics in Nanostructured Hybrid Solar Cells , 2012 .

[248]  H. Boyen,et al.  Towards Efficient Hybrid Solar Cells Based on Fully Polymer Infiltrated ZnO Nanorod Arrays , 2011, Advanced materials.

[249]  Kazuhito Hashimoto,et al.  Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer , 2008 .

[250]  Sean E. Shaheen,et al.  Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer , 2006 .

[251]  Haitao Huang,et al.  Effect of the TiO2 shell thickness on the dye-sensitized solar cells with ZnO–TiO2 core–shell nanorod electrodes , 2011 .

[252]  R. Turan,et al.  Photovoltaic performance of CdS/CdTe junctions on ZnO nanorod arrays , 1970 .

[253]  Jenny Nelson,et al.  Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. , 2006, The journal of physical chemistry. B.

[254]  S. K. Jha,et al.  Enhanced performance by incorporation of zinc oxide nanowire array for organic-inorganic hybrid solar cells , 2012 .

[255]  V. Ahmadi,et al.  Plasmon enhanced CdS-quantum dot sensitized solar cell using ZnO nanorods array deposited with Ag nanoparticles as photoanode , 2015 .

[256]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[257]  Zhonghua Deng,et al.  Dye-sensitized solar cells based on nanoparticle-decorated ZnO/TiO2 core/shell nanorod arrays , 2009 .

[258]  V. Su,et al.  Influence of the absorber layer thickness and rod length on the performance of three-dimensional nanorods thin film hydrogenated amorphous silicon solar cells , 2013 .

[259]  Yue Zhang,et al.  Three-dimensional ordered ZnO/Cu2O nanoheterojunctions for efficient metal-oxide solar cells. , 2015, ACS applied materials & interfaces.

[260]  M. Zacharias,et al.  Enhanced surface-excitonic emission in ZnO/Al2O3 core–shell nanowires , 2008, Nanotechnology.

[261]  Shan Pang,et al.  Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices , 2009, Nanotechnology.

[262]  Hiroshi Segawa,et al.  PbS-Quantum-Dot-Based Heterojunction Solar Cells Utilizing ZnO Nanowires for High External Quantum Efficiency in the Near-Infrared Region , 2013 .

[263]  Anders Hagfeldt,et al.  Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes , 2000 .

[264]  Yong Ding,et al.  Piezotronic effect on the output voltage of P3HT/ZnO micro/nanowire heterojunction solar cells. , 2011, Nano letters.

[265]  K. Hashimoto,et al.  Charge Separation Interfaces in Polymer Photovoltaic Devices Hybridized with ZnO Nanorod Arrays , 2008 .

[266]  Choong-Sun Lim,et al.  Panchromatic photon-harvesting by hole-conducting materials in inorganic-organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels. , 2012, Nano letters.

[267]  Dong Uk Lee,et al.  Highly Improved Sb2S3 Sensitized‐Inorganic–Organic Heterojunction Solar Cells and Quantification of Traps by Deep‐Level Transient Spectroscopy , 2014 .

[268]  Yuning Li,et al.  Efficiency enhancement of inverted organic photovoltaic devices with ZnO nanopillars fabricated on F , 2011 .

[269]  M. Krunks,et al.  Extremely thin absorber layer solar cells on zinc oxide nanorods by chemical spray , 2010 .

[270]  Margaret A. K. Ryan,et al.  CdSe‐Sensitized p‐CuSCN/Nanowire n‐ZnO Heterojunctions , 2005 .

[271]  L. Chen,et al.  Preparation of Vertically Aligned ZnO/TiO2 Core-Shell Composites for Dye-Sensitized Solar Cells , 2013 .

[272]  Yakup Hames,et al.  Electrochemically grown ZnO nanorods for hybrid solar cell applications , 2010 .

[273]  Daniel T. Schwartz,et al.  Electrodeposited Nanocomposite n–p Heterojunctions for Solid-State Dye-Sensitized Photovoltaics , 2000 .

[274]  F. Fabregat‐Santiago,et al.  Modeling and characterization of extremely thin absorber (eta) solar cells based on ZnO nanowires. , 2011, Physical chemistry chemical physics : PCCP.

[275]  M. Bawendi,et al.  Enhanced Photocurrent in PbS Quantum Dot Photovoltaics via ZnO Nanowires and Band Alignment Engineering , 2016 .

[276]  A. Nozik Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. , 2001, Annual review of physical chemistry.

[277]  D. Fan,et al.  Nanostructured Al-ZnO/CdSe/Cu2O ETA solar cells on Al-ZnO film/quartz glass templates , 2011, Nanoscale research letters.

[278]  S. Dunn,et al.  Enhanced quantum dot deposition on ZnO nanorods for photovoltaics through layer-by-layer processing , 2011 .

[279]  Nanostructured conformal hybrid solar cells: a promising architecture towards complete charge collection and light absorption , 2013, Nanoscale Research Letters.

[280]  Zhifeng Liu,et al.  CuSbS2: a promising semiconductor photo-absorber material for quantum dot sensitized solar cells. , 2016, Physical chemistry chemical physics : PCCP.

[281]  Gehan A. J. Amaratunga,et al.  Flexible organic photovoltaics from zinc oxide nanowires grown on transparent and conducting single walled carbon nanotube thin films , 2008 .

[282]  Edward H Sargent,et al.  Colloidal quantum dot photovoltaics: a path forward. , 2011, ACS nano.

[283]  Evangelos Gogolides,et al.  Surface passivation effect by fluorine plasma treatment on ZnO for efficiency and lifetime improvement of inverted polymer solar cells , 2016 .

[284]  Peidong Yang,et al.  General route to vertical ZnO nanowire arrays using textured ZnO seeds. , 2005, Nano letters.

[285]  Ahmed Ennaoui,et al.  Concepts of inorganic solid-state nanostructured solar cells , 2011 .

[286]  Gary Hodes,et al.  Comparison of Dye-and Semiconductor-Sensitized Porous Nanocrystalline Liquid Junction Solar Cells , 2008 .

[287]  Jinwoo Lee,et al.  Highly Efficient and Durable Quantum Dot Sensitized ZnO Nanowire Solar Cell Using Noble-Metal-Free Counter Electrode , 2011 .

[288]  M. I. Ilashchuk,et al.  Fabrication and electrical characterization of the anisotype n-ZnO/p-CdTe heterostructures for solar cell applications , 2013 .

[289]  Timothy L. Kelly,et al.  Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO , 2015 .

[290]  J. Ajuria,et al.  Novel ZnO nanostructured electrodes for higher power conversion efficiencies in polymeric solar cells. , 2011, Physical chemistry chemical physics : PCCP.

[291]  M. Salleh,et al.  Influence of poly(2-methoxy-5-(2’-ethyl)-hexyloxy-p-phenylene vinylene):(6,6)-phenyl C61 butyric acid methyl ester blend ratio on the performance of inverted type organic solar cells based on Eosin-Y-coated ZnO nanorod arrays , 2013 .

[292]  Masaru Saito,et al.  Large photocurrent generation in dye-sensitized ZnO solar cells , 2008 .

[293]  Peidong Yang,et al.  Semiconductor nanowires for energy conversion , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[294]  F. Hsu,et al.  The effect of C60 on the ZnO-nanorod surface in organic–inorganic hybrid photovoltaics , 2011 .

[295]  E. Aydil,et al.  Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films. , 2009, ACS nano.

[296]  Jun-Ho Yum,et al.  Sb2S3-Based Mesoscopic Solar Cell using an Organic Hole Conductor , 2010 .

[297]  S. Yoshikawa,et al.  Vertically aligned ZnO nanorods doped with lithium for polymer solar cells: defect related photovoltaic properties , 2011 .

[298]  C. Dwivedi,et al.  Vertically aligned ZnO nanorods via self-assembled spray pyrolyzed nanoparticles for dye-sensitized solar cells , 2012 .

[299]  M. Abdellah,et al.  Electron relaxation in the CdSe quantum dot - ZnO composite: prospects for photovoltaic applications , 2014, Scientific Reports.

[300]  D. Bellet,et al.  Fabrication and characterization of a composite ZnO semiconductor as electron transporting layer in dye-sensitized solar cells , 2011 .

[301]  Moungi G. Bawendi,et al.  Improved performance and stability in quantum dot solar cells through band alignment engineering , 2014, Nature materials.

[302]  M. Zanuccoli,et al.  Light trapping in ZnO nanowire arrays covered with an absorbing shell for solar cells. , 2014, Optics express.

[303]  Nam-Gyu Park,et al.  Effects of Seed Layer on Growth of ZnO Nanorod and Performance of Perovskite Solar Cell , 2015 .

[304]  D. Oron,et al.  Vertically aligned ZnO/ZnTe core/shell heterostructures on an AZO substrate for improved photovoltaic performance , 2017 .

[305]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[306]  Sangwoo Lim,et al.  Synthesis of a ZnS Shell on the ZnO Nanowire and Its Effect on the Nanowire-Based Dye-Sensitized Solar Cells , 2010 .

[307]  Sang‐Woo Kim,et al.  Optimization of an Electron Transport Layer to Enhance the Power Conversion Efficiency of Flexible Inverted Organic Solar Cells , 2010, Nanoscale research letters.

[308]  Lin-Wang Wang,et al.  Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. , 2007, Nano letters.

[309]  Electron tunneling from colloidal CdSe quantum dots to ZnO nanowires studied by time-resolved luminescence and photoconductivity experiments , 2015, 1502.03279.

[310]  Rei Ruud Schropp,et al.  Nanorod solar cell with an ultrathin a-Si:H absorber layer , 2011 .

[311]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[312]  D. Cahen,et al.  All-solid-state, semiconductor-sensitized nanoporous solar cells. , 2012, Accounts of chemical research.

[313]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[314]  D. Bellet,et al.  Efficient Dye-Sensitized Solar Cells Made from ZnO Nanostructure Composites , 2012 .

[315]  Q. Rafhay,et al.  Effects of the pH on the Formation and Doping Mechanisms of ZnO Nanowires Using Aluminum Nitrate and Ammonia. , 2017, Inorganic chemistry.

[316]  S. Tang,et al.  Enhanced power efficiency of ZnO based organic/inorganic solar cells by surface modification , 2016 .

[317]  Chen-Hao Ku,et al.  Electron transport properties in ZnO nanowire array/nanoparticle composite dye-sensitized solar cells , 2007 .

[318]  Ken Ishikawa,et al.  Recent progress in degradation and stabilization of organic solar cells , 2014 .

[319]  J. D’Haen,et al.  Fully water-processable metal oxide nanorods/polymer hybrid solar cells , 2012 .

[320]  T. Voss,et al.  Oxygen-controlled photoconductivity in ZnO nanowires functionalized with colloidal CdSe quantum dots , 2012 .

[321]  M. Beard,et al.  Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. , 2005, Nano letters.