The Laplacian lattice of a graph under a simplicial distance function

We provide a complete description of important geometric invariants of the Laplacian lattice of a multigraph under the distance function induced by a regular simplex, namely Voronoi Diagram, Delaunay Triangulation, Delaunay Polytope and its combinatorial structure, Shortest Vectors, Covering Radius and Packing Radius. We use this information to obtain the following results: i. We provide an explicit description of the vertices, edges and facets of the Delaunay polytope of the origin under the simplicial distance function and using the description, we show that the Delaunay triangulation contains complete information of the multigraph up to isomorphism. ii. A weak generalization of the matrix-tree theorem: the number of multigraphs with a given Laplacian lattice is controlled, in particular upper bounded, by the number of different Delaunay triangulations. iii. We obtain formulae for the covering and packing densities of a Laplacian lattice and deduce that in the space of Laplacian lattices of undirected connected multigraphs, the Laplacian lattices of highly connected multigraphs such as Ramanujan multigraphs possess high covering and packing properties in the space of Laplacian lattices of connected graphs.

[1]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[2]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[3]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[4]  G. Anastassiou,et al.  Advances in Applied Mathematics and Approximation Theory , 2013 .

[5]  E C G Sudarshan,et al.  Lie Groups and Lie Algebras , 2010 .

[6]  C. Siegel,et al.  Lectures on the Geometry of Numbers , 1989 .

[7]  Bernd Sturmfels,et al.  Monomials, binomials and Riemann–Roch , 2012, ArXiv.

[8]  L. Caporaso,et al.  TORELLI THEOREM FOR GRAPHS AND TROPICAL CURVES , 2009, 0901.1389.

[9]  Carl Friedrich Gauß Carl Friedrich Gauss' Untersuchungen über höhere Arithmetik. (Disquisitiones arithmeticae. Theorematis arithmetici demonstratio nova. Summatio quarundam serierum singularium ó. ). Deutsch hrsg. von H. Mas , 1889 .

[10]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[11]  Omid Amini,et al.  Riemann-Roch for Sub-Lattices of the Root Lattice An , 2010, Electron. J. Comb..

[12]  Norman Biggs,et al.  Chip-Firing and the Critical Group of a Graph , 1999 .

[13]  F. Thorne,et al.  Geometry of Numbers , 2017, Algebraic Number Theory.

[14]  Jeff Cheeger,et al.  Critical points of distance functions and applications to geometry , 1991 .

[15]  Generic lattice ideals , 1998 .

[16]  Omid Amini,et al.  Riemann-Roch for Sublattices of the Root Lattice A n , 2010 .

[17]  Joachim Giesen,et al.  The flow complex: a data structure for geometric modeling , 2003, SODA '03.

[18]  Gábor Tardos,et al.  Polynomial Bound for a Chip Firing Game on Graphs , 1988, SIAM J. Discret. Math..

[19]  J. Martinet Perfect Lattices in Euclidean Spaces , 2010 .

[20]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[21]  Alexander Postnikov,et al.  Trees, parking functions, syzygies, and deformations of monomial ideals , 2003 .

[22]  Roland Bacher,et al.  The lattice of integral flows and the lattice of integral cuts on a finite graph , 1997 .

[23]  Farbod Shokrieh,et al.  Chip-Firing Games, $G$-Parking Functions, and an Efficient Bijective Proof of the Matrix-Tree Theorem , 2009, 0907.4761.

[24]  Vikram Sharma,et al.  Applications of dimensionality reduction and exponential sums to graph automorphism , 2011, Theor. Comput. Sci..

[25]  Mathieu Dutour Sikiric,et al.  Complexity and algorithms for computing Voronoi cells of lattices , 2008, Math. Comput..

[26]  H. Scarf The Structure of the Complex of Maximal Lattice Free Bodies for a Matrix of Size ( n + 1) × n , 2008 .

[27]  Mark de Berg,et al.  Computational Geometry: Algorithms and Applications, Second Edition , 2000 .

[28]  Sergei S. Ryshkov,et al.  On Lattice Dicing , 1994, Eur. J. Comb..

[29]  Dino J. Lorenzini Smith normal form and Laplacians , 2008, J. Comb. Theory B.

[30]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[31]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[32]  H. Minkowski,et al.  Geometrie der Zahlen , 1896 .

[33]  Serguei Norine,et al.  Riemann–Roch and Abel–Jacobi theory on a finite graph , 2006, math/0608360.