The Laplacian lattice of a graph under a simplicial distance function
暂无分享,去创建一个
[1] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[2] K. Ball. CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .
[3] Gordon F. Royle,et al. Algebraic Graph Theory , 2001, Graduate texts in mathematics.
[4] G. Anastassiou,et al. Advances in Applied Mathematics and Approximation Theory , 2013 .
[5] E C G Sudarshan,et al. Lie Groups and Lie Algebras , 2010 .
[6] C. Siegel,et al. Lectures on the Geometry of Numbers , 1989 .
[7] Bernd Sturmfels,et al. Monomials, binomials and Riemann–Roch , 2012, ArXiv.
[8] L. Caporaso,et al. TORELLI THEOREM FOR GRAPHS AND TROPICAL CURVES , 2009, 0901.1389.
[9] Carl Friedrich Gauß. Carl Friedrich Gauss' Untersuchungen über höhere Arithmetik. (Disquisitiones arithmeticae. Theorematis arithmetici demonstratio nova. Summatio quarundam serierum singularium ó. ). Deutsch hrsg. von H. Mas , 1889 .
[10] David K. Smith. Theory of Linear and Integer Programming , 1987 .
[11] Omid Amini,et al. Riemann-Roch for Sub-Lattices of the Root Lattice An , 2010, Electron. J. Comb..
[12] Norman Biggs,et al. Chip-Firing and the Critical Group of a Graph , 1999 .
[13] F. Thorne,et al. Geometry of Numbers , 2017, Algebraic Number Theory.
[14] Jeff Cheeger,et al. Critical points of distance functions and applications to geometry , 1991 .
[15] Generic lattice ideals , 1998 .
[16] Omid Amini,et al. Riemann-Roch for Sublattices of the Root Lattice A n , 2010 .
[17] Joachim Giesen,et al. The flow complex: a data structure for geometric modeling , 2003, SODA '03.
[18] Gábor Tardos,et al. Polynomial Bound for a Chip Firing Game on Graphs , 1988, SIAM J. Discret. Math..
[19] J. Martinet. Perfect Lattices in Euclidean Spaces , 2010 .
[20] N. Linial,et al. Expander Graphs and their Applications , 2006 .
[21] Alexander Postnikov,et al. Trees, parking functions, syzygies, and deformations of monomial ideals , 2003 .
[22] Roland Bacher,et al. The lattice of integral flows and the lattice of integral cuts on a finite graph , 1997 .
[23] Farbod Shokrieh,et al. Chip-Firing Games, $G$-Parking Functions, and an Efficient Bijective Proof of the Matrix-Tree Theorem , 2009, 0907.4761.
[24] Vikram Sharma,et al. Applications of dimensionality reduction and exponential sums to graph automorphism , 2011, Theor. Comput. Sci..
[25] Mathieu Dutour Sikiric,et al. Complexity and algorithms for computing Voronoi cells of lattices , 2008, Math. Comput..
[26] H. Scarf. The Structure of the Complex of Maximal Lattice Free Bodies for a Matrix of Size ( n + 1) × n , 2008 .
[27] Mark de Berg,et al. Computational Geometry: Algorithms and Applications, Second Edition , 2000 .
[28] Sergei S. Ryshkov,et al. On Lattice Dicing , 1994, Eur. J. Comb..
[29] Dino J. Lorenzini. Smith normal form and Laplacians , 2008, J. Comb. Theory B.
[30] Thomas C. Hales. Sphere packings, I , 1997, Discret. Comput. Geom..
[31] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[32] H. Minkowski,et al. Geometrie der Zahlen , 1896 .
[33] Serguei Norine,et al. Riemann–Roch and Abel–Jacobi theory on a finite graph , 2006, math/0608360.