An O(N) Algorithm of Separability for Two-Partite Arbitrarily Dimensional Pure States

How to discriminate entanglement state and separable state rapidly is a key task in quantum information theory. In this paper, we will give a simple separability criterion and a fast algorithm for bipartite pure state systems based on the two order minors of the coefficient matrices of quantum states. By our algorithm, it only needs at most $O(d)$ times operations of multiplication and comparison to judge separability for two-partite pure states in a $d$ dimensional Hilbert space. Furthermore, our algorithm can be easily generalized to multi-partite system. For $n$-partite pure states with dimension $d$, our algorithm only needs at most $O(d\ln(d))$ times operations of multiplication and comparison.

[1]  Chang-shui Yu,et al.  Full separability criterion for tripartite quantum systems , 2007 .

[2]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[3]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[4]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[5]  M. Nielsen,et al.  Interdisciplinary Physics: Biological Physics, Quantum Information, etc. , 2001 .

[6]  Lawrence M. Ioannou,et al.  Computational complexity of the quantum separability problem , 2006, Quantum Inf. Comput..

[7]  M. Nielsen,et al.  Separable states are more disordered globally than locally. , 2000, Physical review letters.

[8]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[9]  Chang-shui Yu,et al.  Separability criterion of tripartite qubit systems , 2005 .

[10]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[11]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[12]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[13]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[14]  Quanhua Xu,et al.  Characterization of multiqubit pure-state entanglement , 2006 .

[15]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.