Synchronizing Probability Measures on Rotations via Optimal Transport

We introduce a new paradigm, `measure synchronization', for synchronizing graphs with measure-valued edges. We formulate this problem as maximization of the cycle-consistency in the space of probability measures over relative rotations. In particular, we aim at estimating marginal distributions of absolute orientations by synchronizing the `conditional' ones, which are defined on the Riemannian manifold of quaternions. Such graph optimization on distributions-on-manifolds enables a natural treatment of multimodal hypotheses, ambiguities and uncertainties arising in many computer vision applications such as SLAM, SfM, and object pose estimation. We first formally define the problem as a generalization of the classical rotation graph synchronization, where in our case the vertices denote probability measures over rotations. We then measure the quality of the synchronization by using Sinkhorn divergences, which reduces to other popular metrics such as Wasserstein distance or the maximum mean discrepancy as limit cases. We propose a nonparametric Riemannian particle optimization approach to solve the problem. Even though the problem is non-convex, by drawing a connection to the recently proposed sparse optimization methods, we show that the proposed algorithm converges to the global optimum in a special case of the problem under certain conditions. Our qualitative and quantitative experiments show the validity of our approach and we bring in new perspectives to the study of synchronization.

[1]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[2]  Richard Sinkhorn A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices , 1964 .

[3]  Richard Sinkhorn,et al.  Concerning nonnegative matrices and doubly stochastic matrices , 1967 .

[4]  Richard Sinkhorn Diagonal equivalence to matrices with prescribed row and column sums. II , 1967 .

[5]  Nancy A. Lynch,et al.  An Overview of Clock Synchronization , 1986, Fault-Tolerant Distributed Computing.

[6]  Paul J. Besl,et al.  Method for registration of 3-D shapes , 1992, Other Conferences.

[7]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[9]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[10]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[11]  Venu Madhav Govindu,et al.  Combining two-view constraints for motion estimation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[12]  P. Galison Einstein's Clocks, Poincare's Maps: Empires of Time , 2003 .

[13]  David Nistér,et al.  An efficient solution to the five-point relative pose problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Venu Madhav Govindu,et al.  Lie-algebraic averaging for globally consistent motion estimation , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[15]  King-Sun Fu,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Publication Information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[17]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[18]  C. Villani,et al.  Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .

[19]  L. Kantorovich On the Translocation of Masses , 2006 .

[20]  Bernhard Schölkopf,et al.  A Kernel Method for the Two-Sample-Problem , 2006, NIPS.

[21]  P.R. Kumar,et al.  Distributed Clock Synchronization over Wireless Networks: Algorithms and Analysis , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[22]  V. Lepetit,et al.  EPnP: An Accurate O(n) Solution to the PnP Problem , 2009, International Journal of Computer Vision.

[23]  H. Jürgensen Synchronization , 2021, Inf. Comput..

[24]  C. Villani Optimal Transport: Old and New , 2008 .

[25]  Pascal Fua,et al.  On benchmarking camera calibration and multi-view stereo for high resolution imagery , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Arthur Cayley,et al.  The Collected Mathematical Papers: On Monge's “Mémoire sur la théorie des déblais et des remblais” , 2009 .

[27]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[28]  Nassir Navab,et al.  Model globally, match locally: Efficient and robust 3D object recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  Andrew Owens,et al.  Discrete-continuous optimization for large-scale structure from motion , 2011, CVPR.

[30]  Andrea Torsello,et al.  Multiview registration via graph diffusion of dual quaternions , 2011, CVPR 2011.

[31]  A. Singer Angular Synchronization by Eigenvectors and Semidefinite Programming. , 2009, Applied and computational harmonic analysis.

[32]  Julien Rabin,et al.  Wasserstein Barycenter and Its Application to Texture Mixing , 2011, SSVM.

[33]  Jochen Trumpf,et al.  L1 rotation averaging using the Weiszfeld algorithm , 2011, CVPR 2011.

[34]  Hongdong Li,et al.  Rotation Averaging , 2013, International Journal of Computer Vision.

[35]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[36]  Paul H. J. Kelly,et al.  SLAM++: Simultaneous Localisation and Mapping at the Level of Objects , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  Trevor Darrell,et al.  Deep Domain Confusion: Maximizing for Domain Invariance , 2014, CVPR 2014.

[38]  Leonidas J. Guibas,et al.  Wasserstein Propagation for Semi-Supervised Learning , 2014, ICML.

[39]  Venu Madhav Govindu,et al.  On Averaging Multiview Relations for 3D Scan Registration , 2014, IEEE Transactions on Image Processing.

[40]  Niloy J. Mitra,et al.  Super4PCS: Fast Global Pointcloud Registration via Smart Indexing , 2019 .

[41]  B. Rossi,et al.  Robust Absolute Rotation Estimation via Low-Rank and Sparse Matrix Decomposition , 2014, 2014 2nd International Conference on 3D Vision.

[42]  J. Angulo Riemannian Lp Averaging on Lie Group of Nonzero Quaternions , 2014 .

[43]  Leonidas J. Guibas,et al.  Earth mover's distances on discrete surfaces , 2014, ACM Trans. Graph..

[44]  Noah Snavely,et al.  Robust Global Translations with 1DSfM , 2014, ECCV.

[45]  Kostas Daniilidis,et al.  Statistical Pose Averaging with Non-isotropic and Incomplete Relative Measurements , 2014, ECCV.

[46]  Andrea Fusiello,et al.  Spectral Motion Synchronization in SE(3) , 2015, ArXiv.

[47]  Jochen Trumpf,et al.  Generalized Weiszfeld Algorithms for Lq Optimization , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  F. Santambrogio Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling , 2015 .

[49]  Slobodan Ilic,et al.  Point Pair Features Based Object Detection and Pose Estimation Revisited , 2015, 2015 International Conference on 3D Vision.

[50]  Roberto Cipolla,et al.  PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[51]  Filippo Santambrogio,et al.  Optimal Transport for Applied Mathematicians , 2015 .

[52]  Ronen Basri,et al.  Stable Camera Motion Estimation Using Convex Programming , 2013, SIAM J. Imaging Sci..

[53]  Frank Dellaert,et al.  Initialization techniques for 3D SLAM: A survey on rotation estimation and its use in pose graph optimization , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[54]  Roberto Cipolla,et al.  Modelling uncertainty in deep learning for camera relocalization , 2015, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[55]  John J. Leonard,et al.  Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age , 2016, IEEE Transactions on Robotics.

[56]  Andrea Fusiello,et al.  Spectral Synchronization of Multiple Views in SE(3) , 2016, SIAM J. Imaging Sci..

[57]  Vladlen Koltun,et al.  Fast Global Registration , 2016, ECCV.

[58]  F. Santambrogio {Euclidean, metric, and Wasserstein} gradient flows: an overview , 2016, 1609.03890.

[59]  Nassir Navab,et al.  Camera Pose Filtering with Local Regression Geodesics on the Riemannian Manifold of Dual Quaternions , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[60]  Javier González,et al.  Cartan-Sync: Fast and Global SE(d)-Synchronization , 2017, IEEE Robotics and Automation Letters.

[61]  Léon Bottou,et al.  Wasserstein GAN , 2017, ArXiv.

[62]  Qiang Liu,et al.  Stein Variational Gradient Descent as Gradient Flow , 2017, NIPS.

[63]  Nicolas Courty,et al.  Optimal Transport for Domain Adaptation , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[64]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[65]  Esa Rahtu,et al.  Relative Camera Pose Estimation Using Convolutional Neural Networks , 2017, ACIVS.

[66]  Yiming Yang,et al.  MMD GAN: Towards Deeper Understanding of Moment Matching Network , 2017, NIPS.

[67]  Alexander J. Smola,et al.  Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy , 2016, ICLR.

[68]  Andrea Fusiello,et al.  Synchronization in the Symmetric Inverse Semigroup , 2017, ICIAP.

[69]  Gabriel Peyré,et al.  Sinkhorn-AutoDiff: Tractable Wasserstein Learning of Generative Models , 2017 .

[70]  Arthur Gretton,et al.  On gradient regularizers for MMD GANs , 2018, NeurIPS.

[71]  Anders P. Eriksson,et al.  Rotation Averaging and Strong Duality , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[72]  Yalin Wang,et al.  Variational Wasserstein Clustering , 2018, ECCV.

[73]  Bernhard Schölkopf,et al.  Wasserstein Auto-Encoders , 2017, ICLR.

[74]  Gustavo K. Rohde,et al.  Sliced-Wasserstein Autoencoder: An Embarrassingly Simple Generative Model , 2018, ArXiv.

[75]  Gabriel Peyré,et al.  Learning Generative Models with Sinkhorn Divergences , 2017, AISTATS.

[76]  Venu Madhav Govindu,et al.  Robust Relative Rotation Averaging , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[77]  Slobodan Ilic,et al.  Bayesian Pose Graph Optimization via Bingham Distributions and Tempered Geodesic MCMC , 2018, NeurIPS.

[78]  Steve Oudot,et al.  Large Scale computation of Means and Clusters for Persistence Diagrams using Optimal Transport , 2018, NeurIPS.

[79]  Rafael Muñoz-Salinas,et al.  Mapping and Localization from Planar Markers , 2016, Pattern Recognit..

[80]  Umut Simsekli,et al.  Probabilistic Permutation Synchronization Using the Riemannian Structure of the Birkhoff Polytope , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[81]  Slobodan Ilic,et al.  3D Local Features for Direct Pairwise Registration , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[82]  Jiacheng Zhuo,et al.  K-Best Transformation Synchronization , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[83]  Roland Badeau,et al.  Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance , 2019, NeurIPS.

[84]  Arthur Gretton,et al.  Maximum Mean Discrepancy Gradient Flow , 2019, NeurIPS.

[85]  Leonidas J. Guibas,et al.  Learning Transformation Synchronization , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[86]  Gregory Shakhnarovich,et al.  Style Transfer by Relaxed Optimal Transport and Self-Similarity , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[87]  John J. Leonard,et al.  SE-Sync: A certifiably correct algorithm for synchronization over the special Euclidean group , 2016, Int. J. Robotics Res..

[88]  Antoine Liutkus,et al.  Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions , 2018, ICML.

[89]  Andrea Fusiello,et al.  Synchronization Problems in Computer Vision with Closed-Form Solutions , 2019, International Journal of Computer Vision.

[90]  Chandrajit Bajaj,et al.  Tensor maps for synchronizing heterogeneous shape collections , 2019, ACM Trans. Graph..

[91]  Lénaïc Chizat Sparse optimization on measures with over-parameterized gradient descent , 2019, Mathematical Programming.

[92]  Roland Badeau,et al.  Generalized Sliced Wasserstein Distances , 2019, NeurIPS.

[93]  Alain Trouvé,et al.  Interpolating between Optimal Transport and MMD using Sinkhorn Divergences , 2018, AISTATS.

[94]  Gabriel Peyré,et al.  Sample Complexity of Sinkhorn Divergences , 2018, AISTATS.

[95]  Nassir Navab,et al.  Explaining the Ambiguity of Object Detection and 6D Pose From Visual Data , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[96]  Hongyuan Zha,et al.  Gromov-Wasserstein Learning for Graph Matching and Node Embedding , 2019, ICML.

[97]  Shahin Shahrampour,et al.  Generalized Sliced Distances for Probability Distributions , 2020, ArXiv.

[98]  Shahin Shahrampour,et al.  Statistical and Topological Properties of Sliced Probability Divergences , 2020, NeurIPS.

[99]  Tat-Jun Chin,et al.  Resolving Marker Pose Ambiguity by Robust Rotation Averaging with Clique Constraints* , 2019, 2020 IEEE International Conference on Robotics and Automation (ICRA).