Access to Ultra-High-Molecular Weight Poly(ethylene) and Activity Boost in the Presence of Cyclopentene With Group 4 Bis-Amido Complexes.

ZrIV complexes of the type [Me2 Si{(NR)(6-{2-(diethylboryl)phenyl}pyridyl-2-yl-N)}ZrCl2 ⋅thf] (R=tBu (4), adamantyl (7 a); thf=tetrahydrofuran), [Me2 Si{(NAd)(6-{2-(diphenylboryl)phenyl}pyridyl-2-yl-N)}ZrCl2 ] (Ad=adamantyl (7 b)), the nonbridged half-titanocene complexes of the type [(N-{6-(2-diethylborylphenyl)pyrid-2-yl}-NR)Cp'TiCl2 ] (R=Me, Cp'=C5 H5 (12), Cp'=C5 Me5 (13)), and the titanium(IV)-based metallocene-type complex [bis{N-(6-{2-(diethylboryl)phenyl}pyrid-2-yl)NMe}TiCl2 ] (14) have been synthesized. The structures of complexes 7 b, 12, and 13 were determined by single-crystal X-ray diffraction analysis. In solution, complex 4 slowly rearranges to [Me2 Si{(N-tBu)(6-{2-(diethylboryl)phenyl}pyridyl-2-yl-N)}2 Zr] (4 a), the structure of which was unambiguously confirmed by single-crystal X-ray crystallography. Similarly, reaction of HfCl4 with Me2 Si({RNLi}{6-[2-(diethylboryl)phenyl]pyridyl-2-ylNLi}) yielded the corresponding HfIV complexes [Me2 Si{(NR)(6-{2-(diethylboryl)phenyl}pyridyl-2-ylN)}2 Hf] (R=tBu (8) and Ad (9)). Upon activation of these complexes with methylalumoxane (MAO), complexes 4, 7 a, 7 b, and 12-14 showed activities up to 750 kg of polyethylene (PE)/molcat.  bar h in the homopolymerization of ethylene (E), producing mainly linear PE (high-density PE, HDPE) with molecular weights in the range of 1 800 000<Mn <4×106  g mol-1 . In the copolymerization of E with cyclopentene (CPE), the polymerization activities of complexes 4, 7 a, and 7 b can be enhanced by a factor of 140 up to 7500 kg PE/molcat.  bar h, which produced PE-co-poly(CPE) containing 3.5 mol % of CPE. This dramatic increase in polymerization activity for E in the presence of CPE can be attributed to an involvement of CPE in the polymerization process rather than to solvent polarity.

[1]  M. Buchmeiser,et al.  Group 4 dimethylsilylenebisamido complexes bearing the 6-[2-(diethylboryl)phenyl]pyrid-2-yl motif: synthesis and use in tandem ring-opening metathesis/vinyl-insertion copolymerization of cyclic olefins with ethylene. , 2011, Chemistry.

[2]  Dongren Wang,et al.  Ein Katalysator für die Tandem-Ringöffnungsmetathesepolymerisation/Vinylinsertionspolymerisation† , 2011 .

[3]  M. Buchmeiser,et al.  A catalyst for the simultaneous ring-opening metathesis polymerization/vinyl insertion polymerization. , 2011, Angewandte Chemie.

[4]  Y. Mu,et al.  Half‐Titanocence Anilide Complexes Cp′TiCl2[N(2,6‐R12C6H3)R2]: Synthesis, Structures and Catalytic Properties for Ethylene Polymerization and Copolymerization with 1‐Hexene , 2011 .

[5]  M. Wagner,et al.  Electronic communication in oligonuclear ferrocene complexes with anionic four-coordinate boron bridges. , 2009, Dalton transactions.

[6]  Yongfei Li,et al.  Homo‐ and copolymerization of ethylene and norbornene with bis(β‐diketiminato) titanium complexes activated with methylaluminoxane , 2008 .

[7]  Jingyu Liu,et al.  Highly Efficient Ethylene/Cyclopentene Copolymerization with Exclusive 1,2‐Cyclopentene Incorporation by (Cyclopentadienyl)(ketimide)titanium(IV) Complex–MAO Catalysts , 2007 .

[8]  Boonyarach Kitiyanan,et al.  Nonbridged half-metallocenes containing anionic ancillary donor ligands: New promising candidates as catalysts for precise olefin polymerization , 2007 .

[9]  Wei Wang,et al.  Effect of Cyclopentadienyl Fragment in Copolymerization of Ethylene with Cyclic Olefins Catalyzed by Non‐Bridged (Aryloxo)(cyclopentadienyl)titanium(IV) Complexes , 2005 .

[10]  Tariqul Hasan,et al.  Ethene−Norbornene Copolymer with High Norbornene Content Produced by ansa-Fluorenylamidodimethyltitanium Complex Using a Suitable Activator , 2004 .

[11]  M. Fujiki,et al.  Efficient Ethylene/Norbornene Copolymerization by (Aryloxo)(indenyl)titanium(IV) Complexes−MAO Catalyst System , 2003 .

[12]  R. Waymouth,et al.  Alternating stereospecific copolymerization of cyclopentene and ethylene with constrained geometry catalysts. , 2003, Chemical communications.

[13]  K. Nomura,et al.  Effect of Cyclopentadienyl and Amide Fragment in Olefin Polymerization by Nonbridged (Amide)(cyclopentadienyl)titanium(IV) Complexes of the Type Cp‘TiCl2[N(R1)R2]−Methylaluminoxane (MAO) Catalyst Systems , 2003 .

[14]  K. Nomura,et al.  Synthesis of Nonbridged (Anilide)(cyclopentadienyl)titanium(IV) Complexes of the Type Cp‘TiCl2[N(2,6-Me2C6H3)(R)] and Their Use in Catalysis for Olefin Polymerization , 2002 .

[15]  Naofumi Naga,et al.  Copolymerization of ethylene and cyclopentene with zirconocene catalysts: Effect of ligand structure of zirconocenes , 2002 .

[16]  A. Horton,et al.  New highly active and selective Et oligomerization catalysts based on cationic diamide zirconium complexes , 2001 .

[17]  R. Schrock,et al.  CH Bond Activation in Cations of the Type {[(2,4,6-Me3C6H2NCH2CH2)2NMe]ZrR}+ and a Simple Solution that Yields a Catalyst for the Living Polymerization of 1-Hexene , 2001 .

[18]  Joon Won Park,et al.  Zirconium(IV) Complexes Having a Rigid 1,8-Naphthalene Diamide versus a Flexible 1,3-Propylene Diamide for Olefin Polymerization , 2000 .

[19]  Kimoon Kim,et al.  Titanium and Zirconium Complexes with the New Ancillary Diamido Ligand N,N‘-Bis(trimethylsilyl)amidobenzylamido(2−): Syntheses, Structures, and α-Olefin Polymerization Activities , 1999 .

[20]  R. Waymouth,et al.  Ethylene/Norbornene Copolymerizations with Titanium CpA Catalysts , 1999 .

[21]  George J. P. Britovsek,et al.  Auf der Suche nach einer neuen Generation von Katalysatoren zur Olefinpolymerisation: „Leben”︁ jenseits der Metallocene , 1999 .

[22]  G. Britovsek,et al.  The Search for New-Generation Olefin Polymerization Catalysts: Life beyond Metallocenes. , 1999, Angewandte Chemie.

[23]  T. Ziegler,et al.  A Unified View of Ethylene Polymerization by d0 and d0fn Transition Metals. 3. Termination of the Growing Polymer Chain , 1999 .

[24]  K. Gardner,et al.  Addition Polymerization of Cyclopentene with Nickel and Palladium Catalysts , 1998 .

[25]  Ruchatz,et al.  Ethene-Norbornene Copolymerization with Homogeneous Metallocene and Half-Sandwich Catalysts: Kinetics and Relationships between Catalyst Structure and Polymer Structure. 3. Copolymerization Parameters and Copolymerization Diagrams. , 1998, Macromolecules.

[26]  Ruchatz,et al.  Ethene-Norbornene Copolymerization with Homogeneous Metallocene and Half-Sandwich Catalysts: Kinetics and Relationships between Catalyst Structure and Polymer Structure. 4. Development of Molecular Weights. , 1998, Macromolecules.

[27]  Ruchatz,et al.  Ethene-Norbornene Copolymerization Using Homogenous Metallocene and Half-Sandwich Catalysts: Kinetics and Relationships between Catalyst Structure and Polymer Structure. 2. Comparative Study of Different Metallocene- and Half-Sandwich/Methylaluminoxane Catalysts and Analysis of the Copolymers by 13C , 1998, Macromolecules.

[28]  Soojin Park,et al.  Zirconium Complexes with the New Ancillary Diamido Ligand 2,2‘-Ethylenebis(N,N‘-(triisopropylsilyl)anilinido)2-: Syntheses, Structures, and Living α-Olefin Polymerization Activities , 1998 .

[29]  Andrew J. P. White,et al.  High activity ethylene polymerisation catalysts based on chelating diamide ligands , 1998 .

[30]  W. M. Davis,et al.  Synthesis of Titanium and Zirconium Complexes That Contain the Tridentate Diamido Ligand, [((t-Bu-d6)N-o-C6H4)2O]2- ([NON]2-) and the Living Polymerization of 1-Hexene by Activated [NON]ZrMe2 , 1997 .

[31]  E. Parisini,et al.  Group 4 Metal Amido Fluorides and Chlorides: Molecular Structures and the First Comparison in Ethylene Polymerization Catalysis , 1996 .

[32]  A. Mccamley,et al.  Polymerisation of ethene by the novel titanium complex [Ti(Me3SiNCH2CH2NSiMe3)Cl2]; a metallocene analogue , 1996 .

[33]  A. Jerschow,et al.  Nuclear magnetic resonance evidence for a new microstructure in ethene-cyclopentene copolymers , 1995 .

[34]  W. Kaminsky,et al.  Copolymerization of norbornene and ethene with homogenous zirconocenes/methylaluminoxane catalysts , 1993 .

[35]  W. Einholz,et al.  Darstellung von arylhalogenboranen , 1986 .

[36]  C. L. Haile,et al.  Synthesis of carbon‐14 and carbon‐13 labeled chlorinated polycyclic pesticides , 1979 .

[37]  A. Sahgal,et al.  Solubility of ethylene in several polar and non‐polar solvents , 1978 .

[38]  T. W. Whaley,et al.  Synthesis of cyclopentadienyl-X-13C thallium , 1975 .