The evolution of vertebrate gastrulation.

The availability of molecular markers now permits the analysis of the common elements of vertebrate gastrulation. While gastrulation appears to be very diverse in the vertebrates, by analyzing a head-organizer marker, goosecoid, and a marker common to all forming mesoderm, Brachyury, we attempt to identify homologous structures and equivalent stages in Xenopus, zebrafish, chick and mouse gastrulation. Using a tail-organizer marker, Xnot-2, we also discuss how the late stages of gastrulation lead to the formation of the postanal tail, a structure characteristic of the chordates.

[1]  P. Lemaire,et al.  A role for cytoplasmic determinants in mesoderm patterning: cell-autonomous activation of the goosecoid and Xwnt-8 genes along the dorsoventral axis of early Xenopus embryos. , 1994, Development.

[2]  S. Moody,et al.  The cleavage stage origin of Spemann's Organizer: analysis of the movements of blastomere clones before and during gastrulation in Xenopus. , 1994, Development.

[3]  E M De Robertis,et al.  Expression of zebrafish goosecoid and no tail gene products in wild-type and mutant no tail embryos. , 1994, Development.

[4]  R. Beddington Induction of a second neural axis by the mouse node. , 1994, Development.

[5]  C. Niehrs,et al.  Mesodermal patterning by a gradient of the vertebrate homeobox gene goosecoid. , 1994, Science.

[6]  B. Blumberg,et al.  Tail formation as a continuation of gastrulation: the multiple cell populations of the Xenopus tailbud derive from the late blastopore lip. , 1993, Development.

[7]  H. Steinbeisser,et al.  Xenopus goosecoid: a gene expressed in the prechordal plate that has dorsalizing activity. , 1993, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[8]  E. Robertis,et al.  The homeobox gene goosecoid and the origin of organizer cells in the early chick blastoderm , 1993, Cell.

[9]  D. Melton,et al.  Xenopus axis formation: induction of goosecoid by injected Xwnt-8 and activin mRNAs. , 1993, Development.

[10]  Jonathan M.W. Slack,et al.  The early development of Xenopus laevis: by P. Hausen and M. Riebesell, Springer-Verlag, 1991. £78.50 (vii + 142 pages) ISBN 3 540 53740 6 , 1993 .

[11]  D. DeSimone,et al.  Integrin alpha subunit mRNAs are differentially expressed in early Xenopus embryos. , 1993, Development.

[12]  D. Grunwald,et al.  Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish. , 1993, Development.

[13]  G. von Dassow,et al.  Induction of the Xenopus organizer: expression and regulation of Xnot, a novel FGF and activin-regulated homeo box gene. , 1993, Genes & development.

[14]  Ken W. Y. Cho,et al.  The homeobox gene goosecoid controls cell migration in Xenopus embryos , 1993, Cell.

[15]  E. D. De Robertis,et al.  Expression of the mouse goosecoid gene during mid-embryogenesis may mark mesenchymal cell lineages in the developing head, limbs and body wall. , 1993, Development.

[16]  R. Ho,et al.  The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo. , 1992, Development.

[17]  William C. Smith,et al.  Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos , 1992, Cell.

[18]  P. Tam,et al.  The somitogenetic potential of cells in the primitive streak and the tail bud of the organogenesis-stage mouse embryo. , 1992, Development.

[19]  Ken W. Y. Cho,et al.  Gastrulation in the mouse: The role of the homeobox gene goosecoid , 1992, Cell.

[20]  M. Jamrich,et al.  A novel, activin-inducible, blastopore lip-specific gene of Xenopus laevis contains a fork head DNA-binding domain. , 1992, Genes & development.

[21]  E. D. De Robertis,et al.  Neural induction and regionalisation in the chick embryo. , 1992, Development.

[22]  P. Good,et al.  The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos. , 1992, Genes & development.

[23]  Ken W. Y. Cho,et al.  Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid , 1991, Cell.

[24]  R. Harland,et al.  Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center , 1991, Cell.

[25]  B. Herrmann,et al.  Expression pattern of the Brachyury gene in whole-mount TWis/TWis mutant embryos. , 1991, Development.

[26]  J. Smith,et al.  Expression of a xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction , 1991, Cell.

[27]  B. Blumberg,et al.  Organizer-specific homeobox genes in Xenopus laevis embryos. , 1991, Science.

[28]  J. Gurdon,et al.  The heritage of experimental embryology: Hans Spemann and the organizer by Viktor Hamburger, Oxford University Press, 1988. £22.50/$29.95 (196 pages) ISBN 0 19505 110 6 , 1989, Trends in Neurosciences.

[29]  J. Gerhart,et al.  Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development. , 1989, Development.

[30]  J. Slack,et al.  Regional specification within the mesoderm of early embryos of Xenopus laevis. , 1987, Development.

[31]  S. Gould,et al.  Ontogeny and Phylogeny , 1978 .

[32]  S. Gluecksohn‐Schoenheimer The Development of Two Tailless Mutants in the House Mouse. , 1938, Genetics.

[33]  J. Smith,et al.  Control of vertebrate gastrulation: inducing signals and responding genes. , 1993, Current opinion in genetics & development.

[34]  Toby Anita Appel,et al.  The Cuvier-Geoffroy debate , 1987 .

[35]  H. Spemann Embryonic development and induction , 1938 .

[36]  C. H. Waddington,et al.  Induction by the Primitive Streak and its Derivatives in the Chick , 1933 .