Experimental control of cardiac muscle alternans.

We demonstrate that alternans in small pieces of in vitro paced bullfrog (Rana Catesbeiana) myocardium can be suppressed by making minute adjustments to the pacing period in response to real time measurements of the action potential duration. Control is possible over a large range of physiological conditions over many animals and the self-referencing control protocol can automatically adjust to changes in the pacing interval. Our results suggest the feasibility of developing low-energy methods for maintaining normal cardiac function.

[1]  Flavio H. Fenton,et al.  SPATIOTEMPORAL CONTROL OF WAVE INSTABILITIES IN CARDIAC TISSUE , 1999 .

[2]  A V Holden,et al.  Control of re-entrant activity in a model of mammalian atrial tissue , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[3]  Christini,et al.  Using chaos control and tracking to suppress a pathological nonchaotic rhythm in a cardiac model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  Visarath In,et al.  Control of Human Atrial Fibrillation , 2000, Int. J. Bifurc. Chaos.

[5]  B B Lerman,et al.  Nonlinear-dynamical arrhythmia control in humans , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Leon Glass,et al.  Dynamics of Cardiac Arrhythmias , 1996 .

[7]  Mari Watanabe,et al.  Strategy for control of complex low-dimensional dynamics in cardiac tissue , 1996, Journal of mathematical biology.

[8]  J Jalife,et al.  Supernormal excitability as a mechanism of chaotic dynamics of activation in cardiac Purkinje fibers. , 1990, Circulation research.

[9]  G. R. Mines On dynamic equilibrium in the heart , 1913, The Journal of physiology.

[10]  A. T. Winfree,et al.  Evolving perspectives during 12 years of electrical turbulence. , 1998, Chaos.

[11]  S. Sinha,et al.  Defibrillation via the elimination of spiral turbulence in a model for ventricular fibrillation. , 2001, Physical review letters.

[12]  R. Gray,et al.  Spatial and temporal organization during cardiac fibrillation , 1998, Nature.

[13]  Celso Grebogi,et al.  Using small perturbations to control chaos , 1993, Nature.

[14]  A. Karma Electrical alternans and spiral wave breakup in cardiac tissue. , 1994, Chaos.

[15]  Harold M. Hastings,et al.  Memory in an Excitable Medium: A Mechanism for Spiral Wave Breakup in the Low-Excitability Limit , 1999 .

[16]  N. B. Strydom,et al.  The influence of boot weight on the energy expenditure of men walking on a treadmill and climbing steps , 2004, Internationale Zeitschrift für angewandte Physiologie einschließlich Arbeitsphysiologie.

[17]  L. J. Leon,et al.  Spatiotemporal evolution of ventricular fibrillation , 1998, Nature.

[18]  A Garfinkel,et al.  Controlling cardiac chaos. , 1992, Science.

[19]  Daniel J. Gauthier,et al.  Comment on ``Dynamic Control of Cardiac Alternans'' , 1997 .

[20]  Glass,et al.  Resetting and Annihilation of Reentrant Abnormally Rapid Heartbeat. , 1995, Physical review letters.

[21]  Daniel J. Gauthier,et al.  Prevalence of Rate-Dependent Behaviors in Cardiac Muscle , 1999 .

[22]  Daniel J. Gauthier,et al.  Analysis and comparison of multiple-delay schemes for controlling unstable fixed points of discrete maps , 1998 .

[23]  L. Glass,et al.  DYNAMIC CONTROL OF CARDIAC ALTERNANS , 1997 .

[24]  R. Cohen,et al.  Electrical alternans during rest and exercise as predictors of vulnerability to ventricular arrhythmias. , 1997, The American journal of cardiology.

[25]  J. Nolasco,et al.  A graphic method for the study of alternation in cardiac action potentials. , 1968, Journal of applied physiology.