On the Monadic Second-Order Transduction Hierarchy

We compare classes ofnite relational structures via monad ic second-order transductions. More precisely, we study the preorder where we set C v K if, and only if, there exists a transductionsuch that C � �(K). If we only consider classes of incidence structures we can completely describe the resulting hierarchy. It is linear of order type !+3. Each level can be characterised in terms of a suitable variant of tree-width. Canonical representatives of the various levels are: the class of all trees of height n, for each n 2 N, of all paths, of all trees, and of all grids.

[1]  Grzegorz Rozenberg,et al.  Handbook of Graph Grammars and Computing by Graph Transformations, Volume 1: Foundations , 1997 .

[2]  Achim Blumensath Structures of bounded partition width , 2003 .

[3]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[4]  Bruno Courcelle,et al.  The Expression of Graph Properties and Graph Transformations in Monadic Second-Order Logic , 1997, Handbook of Graph Grammars.

[5]  Frank Harary,et al.  Graph Theory , 2016 .

[6]  Bruno Courcelle,et al.  The monadic second-order logic of graphs XIV: uniformly sparse graphs and edge set quantifications , 2003, Theor. Comput. Sci..

[7]  M. Rabin Decidability of second-order theories and automata on infinite trees , 1968 .

[8]  Christof Löding,et al.  Logical theories and compatible operations , 2007, Logic and Automata.

[9]  Hartmut Ehrig,et al.  Handbook of graph grammars and computing by graph transformation: vol. 3: concurrency, parallelism, and distribution , 1999 .

[10]  Jaroslav Nesetril,et al.  Linear time low tree-width partitions and algorithmic consequences , 2006, STOC '06.

[11]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs V: On Closing the Gap Between Definability and Recognizability , 1991, Theor. Comput. Sci..

[12]  Detlef Seese,et al.  The Structure of Models of Decidable Monadic Theories of Graphs , 1991, Ann. Pure Appl. Log..

[13]  Alan S. Stern,et al.  A Lattice of Chapters of Mathematics: Interpretations Between Theorems , 1990 .

[14]  Jaroslav Nesetril,et al.  Tree-depth, subgraph coloring and homomorphism bounds , 2006, Eur. J. Comb..

[15]  Bruno Courcelle,et al.  Vertex-minors, monadic second-order logic, and a conjecture by Seese , 2007, J. Comb. Theory, Ser. B.

[16]  Leonid Libkin,et al.  Elements of Finite Model Theory , 2004, Texts in Theoretical Computer Science.

[17]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[18]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs VIII: Orientations , 1995, Ann. Pure Appl. Log..

[19]  Denis Lapoire,et al.  Recognizability Equals Monadic Second-Order Definability for Sets of Graphs of Bounded Tree-Width , 1998, STACS.

[20]  Paul D. Seymour,et al.  Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.

[21]  Martin Otto,et al.  Back and forth between guarded and modal logics , 2002, TOCL.

[22]  S. Shelah The monadic theory of order , 1975, 2305.00968.

[23]  Achim Blumensath A model-theoretic characterisation of clique width , 2006, Ann. Pure Appl. Log..

[24]  Bruno Courcelle,et al.  An Axiomatic Definition of Context-Free Rewriting and its Application to NLC Graph Grammars , 1987, Theor. Comput. Sci..

[25]  Bruno Courcelle,et al.  A Logical Characterization of the Sets of Hypergraphs Defined by Hyperedge Replacement Grammars , 1995, Math. Syst. Theory.

[26]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[27]  Achim Blumensath Guarded Second-Order Logic, Spanning Trees, and Network Flows , 2010, Log. Methods Comput. Sci..