Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system
暂无分享,去创建一个
[1] J. Hale,et al. Methods of Bifurcation Theory , 1996 .
[2] Marcelo Messias,et al. Bifurcation analysis of a new Lorenz-like chaotic system , 2008 .
[3] Charles R. Doering,et al. On the shape and dimension of the Lorenz attractor , 1995 .
[4] A. Wolf,et al. Determining Lyapunov exponents from a time series , 1985 .
[5] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[6] M. Viana. What’s new on lorenz strange attractors? , 2000 .
[7] T. Rikitake,et al. Oscillations of a system of disk dynamos , 1958, Mathematical Proceedings of the Cambridge Philosophical Society.
[8] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[9] M. Rabinovich,et al. Onset of stochasticity in decay confinement of parametric instability , 1978 .
[10] Hiroshi Kokubu,et al. Existence of a Singularly Degenerate Heteroclinic Cycle in the Lorenz System and Its Dynamical Consequences: Part I , 2004 .
[11] Jaume Llibre,et al. Bounded polynomial vector fields , 1990 .
[12] M. Hénon,et al. A two-dimensional mapping with a strange attractor , 1976 .
[13] Jaume Llibre,et al. On the global dynamics of the Rabinovich system , 2008 .