Co-axial heterostructures integrating palladium/titanium dioxide with carbon nanotubes for efficient electrocatalytic hydrogen evolution

[1]  K. Takanabe,et al.  Electrocatalytic Hydrogen Evolution under Densely Buffered Neutral pH Conditions , 2015 .

[2]  Jian Zhang,et al.  Molecular metal–Nx centres in porous carbon for electrocatalytic hydrogen evolution , 2015, Nature Communications.

[3]  P. Ceroni,et al.  Uniform Functionalization of High-Quality Graphene with Platinum Nanoparticles for Electrocatalytic Water Reduction , 2015, ChemistryOpen.

[4]  Junhong Chen,et al.  Nitrogen-doped activated carbon as a metal free catalyst for hydrogen production in microbial electrolysis cells , 2014 .

[5]  N. Lewis,et al.  Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles. , 2014, ACS nano.

[6]  H. Gasteiger,et al.  New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism , 2014 .

[7]  Irini Angelidaki,et al.  Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges. , 2014, Water research.

[8]  Nathan S Lewis,et al.  Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. , 2014, Angewandte Chemie.

[9]  Abdullah M. Asiri,et al.  Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. , 2014, Journal of the American Chemical Society.

[10]  T. Jaramillo,et al.  Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2- clusters. , 2014, Nature chemistry.

[11]  Bingfei Cao,et al.  Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. , 2013, Journal of the American Chemical Society.

[12]  Etsuko Fujita,et al.  Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. , 2013, Chemical communications.

[13]  Christopher B. Murray,et al.  Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts , 2013, Science.

[14]  James R. McKone,et al.  Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. , 2013, Journal of the American Chemical Society.

[15]  L. Cronin,et al.  Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. , 2013, Nature chemistry.

[16]  M. Marcaccio,et al.  A molecular shuttle driven by fullerene radical-anion recognition. , 2012, Chemistry.

[17]  M. Field,et al.  Copper molybdenum sulfide: a new efficient electrocatalyst for hydrogen production from water , 2012 .

[18]  Zhiqun Lin,et al.  High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays. , 2012, Journal of the American Chemical Society.

[19]  M. Fontecave,et al.  A Janus cobalt-based catalytic material for electro-splitting of water. , 2012, Nature materials.

[20]  Maurizio Prato,et al.  Multiwalled carbon nanotubes drive the activity of metal@oxide core-shell catalysts in modular nanocomposites. , 2012, Journal of the American Chemical Society.

[21]  J. Savéant,et al.  Turnover numbers, turnover frequencies, and overpotential in molecular catalysis of electrochemical reactions. Cyclic voltammetry and preparative-scale electrolysis. , 2012, Journal of the American Chemical Society.

[22]  Maria Chan,et al.  Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. , 2012, Nature materials.

[23]  Dusan Strmcnik,et al.  Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+‐Ni(OH)2‐Pt Interfaces. , 2012 .

[24]  R. Gorte,et al.  A versatile route to core-shell catalysts: synthesis of dispersible M@oxide (M=Pd, Pt; oxide=TiO2, ZrO2) nanostructures by self-assembly. , 2012, ChemSusChem.

[25]  R. Gorte,et al.  A Versatile Approach to the Synthesis of Functionalized Thiol-Protected Palladium Nanoparticles , 2011 .

[26]  H. Vrubel,et al.  Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water , 2011 .

[27]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[28]  Guosong Hong,et al.  MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. , 2011, Journal of the American Chemical Society.

[29]  V. Balzani,et al.  The hydrogen issue. , 2011, ChemSusChem.

[30]  M. Marcaccio,et al.  Creation of Reactive Micro Patterns on Silicon by Scanning Electrochemical Microscopy , 2010 .

[31]  H. Gasteiger,et al.  Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes , 2010 .

[32]  Gianfranco Scorrano,et al.  Efficient water oxidation at carbon nanotube-polyoxometalate electrocatalytic interfaces. , 2010, Nature chemistry.

[33]  Yasuhiro Shiraishi,et al.  One-pot synthesis of benzimidazoles by simultaneous photocatalytic and catalytic reactions on Pt@TiO2 nanoparticles. , 2010, Angewandte Chemie.

[34]  P. D. Tran,et al.  From Hydrogenases to Noble Metal–Free Catalytic Nanomaterials for H2 Production and Uptake , 2009, Science.

[35]  Liaochuan Jiang,et al.  Photoelectrochemical Study on Charge Transfer Properties of ZnO Nanowires Promoted by Carbon Nanotubes , 2009 .

[36]  M. Antonietti,et al.  Photocatalytic Activities of Graphitic Carbon Nitride Powder for Water Reduction and Oxidation under Visible Light , 2009 .

[37]  A. Bard,et al.  Scanning electrochemical microscopy. 60. Quantitative calibration of the SECM substrate generation/tip collection mode and its use for the study of the oxygen reduction mechanism. , 2008, Analytical chemistry.

[38]  G. Wittstock,et al.  Scanning electrochemical microscopy for direct imaging of reaction rates. , 2007, Angewandte Chemie.

[39]  J. Tour,et al.  Functionalization of single-walled carbon nanotubes "on water". , 2006, Journal of the American Chemical Society.

[40]  M. Prato,et al.  Chemistry of carbon nanotubes. , 2006, Chemical reviews.

[41]  M. D. Rooij,et al.  Electrochemical Methods: Fundamentals and Applications , 2003 .

[42]  B. V. Tilak,et al.  Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H , 2002 .

[43]  A. Hirsch Functionalization of single-walled carbon nanotubes. , 2002, Angewandte Chemie.

[44]  A. Bard,et al.  Scanning electrochemical microscopy. , 2001, Annual review of analytical chemistry.

[45]  Philip N. Ross,et al.  TEMPERATURE-DEPENDENT HYDROGEN ELECTROCHEMISTRY ON PLATINUM LOW-INDEX SINGLE-CRYSTAL SURFACES IN ACID SOLUTIONS , 1997 .

[46]  Ladislav Kavan,et al.  ELECTROCHEMICAL AND PHOTOELECTROCHEMICAL INVESTIGATION OF SINGLE-CRYSTAL ANATASE , 1996 .

[47]  M. Tomkiewicz The Potential Distribution at the TiO2 Aqueous Electrolyte Interface , 1979 .

[48]  Mei Wang,et al.  A super-efficient cobalt catalyst for electrochemical hydrogen production from neutral water with 80 mV overpotential , 2014 .

[49]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[50]  佐藤 教男 Electrochemistry at metal and semiconductor electrodes , 1998 .

[51]  N. Sato CHAPTER 10 – SEMICONDUCTOR PHOTOELECTRODES , 1998 .

[52]  N. N. Greenwood,et al.  Chemistry of the elements , 1984 .