An abstract extremal principle with applications to welfare economics

In this paper we introduce general prenormal and normal structures in Banach spaces that cover conventional concepts of normals to arbitrary closed sets under minimal requirements. Based on these structures, we establish new abstract versions of the extremal principle in variational analysis, which plays a fundamental role in many applications. The main applications of this paper concern necessary conditions for Pareto optimality in nonconvex models of welfare economics. We obtain new results in this direction that extend approximate and exact versions of the generalized second welfare theorem for Pareto, weak Pareto, and strong Pareto optimal allocations.

[1]  M. Ali Khan,et al.  Ioffe's normal cone and the foundations of welfare economics: The infinite dimensional theory , 1991 .

[2]  B. Mordukhovich Generalized Differential Calculus for Nonsmooth and Set-Valued Mappings , 1994 .

[3]  R. Rockafellar Generalized Directional Derivatives and Subgradients of Nonconvex Functions , 1980, Canadian Journal of Mathematics.

[4]  B. Mordukhovich,et al.  Extremal characterizations of asplund spaces , 1996 .

[5]  A. Ioffe Approximate subdifferentials and applications 3: the metric theory , 1989 .

[6]  Alexander D. Ioffe,et al.  Fuzzy Principles and Characterization of Trustworthiness , 1998 .

[7]  Bernard Cornet,et al.  The Second Welfare Theorem in Nonconvex Economies , 1986 .

[8]  Bernard Cornet Marginal cost pricing and Pareto optimality , 1988 .

[9]  G. Debreu,et al.  Theory of Value , 1959 .

[10]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[11]  Roger Guesnerie,et al.  Pareto Optimality in Non-Convex Economies , 1975 .

[12]  J. Borwein,et al.  On the Equivalence of Some Basic Principles in Variational Analysis , 1999 .

[13]  B. Mordukhovich,et al.  Nonsmooth sequential analysis in Asplund spaces , 1996 .

[14]  Boris S. Mordukhovich,et al.  Compactly epi-Lipschitzian convex sets and functions in normed spaces , 2000 .

[15]  R. Phelps Convex Functions, Monotone Operators and Differentiability , 1989 .

[16]  Jonathan M. Borwein,et al.  A nonconvex separation property in Banach spaces , 1998, Math. Methods Oper. Res..

[17]  Positive operators on Krein spaces , 1992 .

[18]  Bernard Cornet,et al.  Valuation equilibrium and Pareto optimum in non-convex economies , 1988 .

[19]  Jonathan M. Borwein,et al.  Viscosity Solutions and Viscosity Subderivatives in Smooth Banach Spaces with Applications to Metric Regularity , 1996 .

[20]  Boris S. Mordukhovich,et al.  Nonconvex differential calculus for infinite-dimensional multifunctions , 1996 .

[21]  Qiji J. Zhu,et al.  The Equivalence of Several Basic Theorems for Subdifferentials , 1998 .

[22]  G. Debreu VALUATION EQUILIBRIUM AND PARETO OPTIMUM. , 1954, Proceedings of the National Academy of Sciences of the United States of America.

[23]  A. Mas-Colell The Theory Of General Economic Equilibrium , 1985 .

[24]  Boris S. Mordukhovich,et al.  The extremal principle and its applications to optimization and economics , 2001 .

[25]  M. Ali Khan The Mordukhovich Normal Cone and the Foundations of Welfare Economics , 1999 .

[26]  K. Arrow,et al.  General Competitive Analysis , 1971 .