Expression of ataxin-7 in CNS and non-CNS tissue of normal and SCA7 individuals

[1]  Ying-Hui Fu,et al.  Ataxin-7 expression analysis in controls and spinocerebellar ataxia type 7 patients , 2001, Neurogenetics.

[2]  Y. Agid,et al.  Distribution of ataxin-7 in normal human brain and retina. , 2000, Brain : a journal of neurology.

[3]  G. Yvert,et al.  Expression Analysis of Ataxin‐7 mRNA and Protein in Human Brain: Evidence for a Widespread Distribution and Focal Protein Accumulation , 2000, Brain pathology.

[4]  C. van Broeckhoven,et al.  Identification and localization of ataxin-7 in brain and retina of a patient with cerebellar ataxia type II using anti-peptide antibody. , 1999, Brain research. Molecular brain research.

[5]  T. Uchihara,et al.  Neuronal intranuclear inclusions in spinocerebellar ataxia type 2: triple-labeling immunofluorescent study , 1999, Neuroscience Letters.

[6]  A. Brice,et al.  Molecular and clinical study of 18 families with ADCA type II: evidence for genetic heterogeneity and de novo mutation. , 1999, American journal of human genetics.

[7]  C. Duyckaerts,et al.  Nuclear inclusions in spinocerebellar ataxia type 1 , 1999, Acta Neuropathologica.

[8]  H. Paulson,et al.  Recruitment and the Role of Nuclear Localization in Polyglutamine-mediated Aggregation , 1998, The Journal of cell biology.

[9]  Yasuko Hayashi,et al.  Hereditary dentatorubral-pallidoluysian atrophy: detection of widespread ubiquitinated neuronal and glial intranuclear inclusions in the brain , 1998, Acta Neuropathologica.

[10]  Harry T Orr,et al.  Ataxin-1 Nuclear Localization and Aggregation Role in Polyglutamine-Induced Disease in SCA1 Transgenic Mice , 1998, Cell.

[11]  Steven Finkbeiner,et al.  Huntingtin Acts in the Nucleus to Induce Apoptosis but Death Does Not Correlate with the Formation of Intranuclear Inclusions , 1998, Cell.

[12]  H. Zoghbi,et al.  Molecular and clinical studies in SCA-7 define a broad clinical spectrum and the infantile phenotype , 1998, Neurology.

[13]  K. Fischbeck,et al.  Nonneural nuclear inclusions of androgen receptor protein in spinal and bulbar muscular atrophy. , 1998, The American journal of pathology.

[14]  C. Ross,et al.  Intranuclear neuronal inclusions in DRPLA. , 1998, Movement disorders : official journal of the Movement Disorder Society.

[15]  E. Hirsch,et al.  Neuronal distribution of intranuclear inclusions in Huntington's disease with adult onset , 1998, Neuroreport.

[16]  A Dürr,et al.  Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. , 1998, Human molecular genetics.

[17]  A. Brice,et al.  Expanded CAG repeats in Swedish spinocerebellar ataxia type 7 (SCA7) patients: effect of CAG repeat length on the clinical manifestation. , 1998, Human molecular genetics.

[18]  J. Theuns,et al.  Molecular genetic analysis of autosomal dominant cerebellar ataxia with retinal degeneration (ADCA type II) caused by CAG triplet repeat expansion. , 1998, Human molecular genetics.

[19]  Y. Agid,et al.  Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7). , 1998, Human molecular genetics.

[20]  H. Zoghbi,et al.  Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures , 1997, Nature.

[21]  S. W. Davies,et al.  Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. , 1997, Science.

[22]  Y. Agid,et al.  Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion , 1997, Nature Genetics.

[23]  K. Fischbeck,et al.  Intranuclear Inclusions of Expanded Polyglutamine Protein in Spinocerebellar Ataxia Type 3 , 1997, Neuron.

[24]  S. Tsuji,et al.  Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT , 1996, Nature Genetics.

[25]  Georg Auburger,et al.  Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2 , 1996, Nature Genetics.

[26]  Yves Agid,et al.  Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats , 1996, Nature Genetics.

[27]  L. Forsgren,et al.  Localization of autosomal dominant cerebellar ataxia associated with retinal degeneration and anticipation to chromosome 3p12-p21.1. , 1995, Human molecular genetics.

[28]  H. Zoghbi,et al.  Molecular and clinical correlations in spinocerebellar ataxia type 3 and Machado‐Joseph disease , 1995, Annals of neurology.

[29]  J. Lowe,et al.  The cortical neuritic pathology of Huntington's disease , 1995, Neuropathology and applied neurobiology.

[30]  K. Digre,et al.  Autosomal dominant cerebellar ataxia with retinal degeneration , 1994, Neurology.

[31]  Huda Y. Zoghbi,et al.  Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1 , 1993, Nature Genetics.

[32]  M. Tabaton,et al.  Ubiquitin-reactive neurites in cerebral cortex of subjects with Huntington's chorea: a pathological correlate of dementia? , 1993, Neuroscience Letters.

[33]  Manish S. Shah,et al.  A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes , 1993, Cell.

[34]  K. Fischbeck,et al.  Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy , 1991, Nature.

[35]  B. Konigsmark,et al.  THE OLIVOPONTOCEREBELLAR ATROPHIES: A REVIEW , 1970, Medicine.

[36]  William B. Dobyns,et al.  Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel , 1997, Nature Genetics.

[37]  Shigenobu Nakamura,et al.  CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1 , 1994, Nature Genetics.

[38]  O. Onodera,et al.  Unstable expansion of CAG repeat in hereditary dentatorubral–pallidoluysian atrophy (DRPLA) , 1994, Nature Genetics.

[39]  A. Sano,et al.  Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p , 1994, Nature Genetics.

[40]  T. Wisniewski,et al.  Accumulation of alpha B-crystallin in central nervous system glia and neurons in pathologic conditions. , 1992, The American journal of pathology.