The superconvergence of the Newton-Cotes rule for Cauchy principal value integrals

We consider the general (composite) Newton-Cotes method for the computation of Cauchy principal value integrals and focus on its pointwise superconvergence phenomenon, which means that the rate of convergence of the Newton-Cotes quadrature rule is higher than what is globally possible when the singular point coincides with some a priori known point. The necessary and sufficient conditions satisfied by the superconvergence point are given. Moreover, the superconvergence estimate is obtained and the properties of the superconvergence points are investigated. Finally, some numerical examples are provided to validate the theoretical results.

[1]  Dehao Yu,et al.  Superconvergence of the composite Simpson's rule for a certain finite-part integral and its applications , 2009 .

[2]  Weiwei Sun,et al.  Newton-Cotes Formulae for the Numerical Evaluation of Certain Hypersingular Integrals , 2005, Computing.

[3]  P. Köhler,et al.  On the error of quadrature formulae for Cauchy principal value integrals based on piecewise interpolation , 1997 .

[4]  Kai Diethelm,et al.  Modified compound quadrature rules for strongly singular integrals , 1994, Computing.

[5]  Peter Linz,et al.  On the approximate computation of certain strongly singular integrals , 1985, Computing.

[6]  N. Mohankumar,et al.  A Comparison of Some Quadrature Methods for Approximating Cauchy Principal Value Integrals , 1995 .

[7]  Takemitsu Hasegawa,et al.  Uniform approximations to finite Hilbert transform and its derivative , 2004 .

[8]  S. Amari,et al.  Evaluation of Cauchy Principal-Value Integrals using modified Simpson rules , 1994 .

[9]  Dan Givoli,et al.  Natural Boundary Integral Method and Its Applications , 2002 .

[10]  Kai Diethelm,et al.  Gaussian quadrature formulae of the third kind for Cauchy principal value integrals: basic properties and error estimates , 1995 .

[11]  G. Behforooz Approximation of Cauchy principal value integrals by piecewise Hermite quartic polynomials by spline , 1992 .

[12]  Jiming Wu,et al.  A superconvergence result for the second-order Newton–Cotes formula for certain finite-part integrals , 2005 .

[13]  Bernd Silbermann,et al.  Numerical analysis for one-dimensional Cauchy singular integral equations , 2000 .

[14]  A. Palamara Orsi,et al.  Spline approximation for Cauchy principal value integrals , 1990 .

[15]  Philsu Kim,et al.  A quadrature rule of interpolatory type for Cauchy integrals , 2000 .

[16]  U. Jin Choi,et al.  Improvement of the asymptotic behaviour of the Euler–Maclaurin formula for Cauchy principal value and Hadamard finite‐part integrals , 2004 .

[17]  Kai Diethelm,et al.  Asymptotically sharp error bounds for a quadrature rule for Cauchy principal value integrals based on piecewise linear interpolation , 1995 .

[18]  Weiwei Sun,et al.  The superconvergence of Newton–Cotes rules for the Hadamard finite-part integral on an interval , 2008, Numerische Mathematik.

[19]  Larry C. Andrews,et al.  Special Functions Of Mathematics For Engineers , 2022 .

[20]  Philsu Kim,et al.  On the convergence of interpolatory-type quadrature rules for evaluating Cauchy integrals , 2002 .

[21]  Catterina Dagnino,et al.  On the evaluation of one-dimensional Cauchy principal value integrals by rules based on cubic spline interpolation , 1990, Computing.

[22]  Weiwei Sun,et al.  The Superconvergence of the Composite Trapezoidal Rule for Hadamard Finite Part Integrals , 2005, Numerische Mathematik.

[23]  G. Criscuolo,et al.  Formule gaussiane per il calcolo di integrali a valor principale secondo Cauchy e loro convergenza , 1985 .

[24]  Buyang Li,et al.  Newton–Cotes rules for Hadamard finite-part integrals on an interval , 2010 .

[25]  Xiaoping Zhang,et al.  The superconvergence of the composite midpoint rule for the finite-part integral , 2010, J. Comput. Appl. Math..

[26]  Nikolaos I. Ioakimidis,et al.  On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals and their derivatives , 1985 .

[27]  Jiming Wu,et al.  Generalized Extrapolation for Computation of Hypersingular Integrals in Boundary Element Methods , 2009 .