Direct Observation of Solvent Donor Number Effect on Lithium–Oxygen Battery Capacity via a Nanoarray Cathode Model

[1]  H. Byon,et al.  Lithium-Air Batteries: Air-Breathing Challenges and Perspective. , 2020, ACS nano.

[2]  Rosy,et al.  Lithium-Oxygen Batteries and Related Systems: Potential, Status, and Future. , 2020, Chemical reviews.

[3]  John Wang,et al.  Combinational Design of Electronic Structure and Nanoarray Architecture Achieves a Low‐Overpotential Oxygen Electrode for Aprotic Lithium–Oxygen Batteries , 2020 .

[4]  Ramin Rojaee,et al.  Two Dimensional Materials to Address the Li-Based Battery Challenges. , 2020, ACS nano.

[5]  Y. Kubo,et al.  Enhancement of Bifunctional Effect for LiNO3/glyme Electrolyte by Using Dual Solvent System for Li-O2 Batteries , 2020, Journal of The Electrochemical Society.

[6]  Jinping Liu,et al.  Noninterference Revealing of “Layered to Layered” Zinc Storage Mechanism of δ‐MnO2 toward Neutral Zn–Mn Batteries with Superior Performance , 2020, Advanced science.

[7]  Jinping Liu,et al.  Surface carboxyl groups enhance the capacities of carbonaceous oxygen electrodes for aprotic lithium−oxygen batteries: A direct observation on binder-free electrodes , 2019 .

[8]  Yi‐Chun Lu,et al.  A Solvent-Controlled Oxidation Mechanism of Li2O2 in Lithium-Oxygen Batteries , 2018, Joule.

[9]  Haiming Xie,et al.  Binary Mixtures of Highly Concentrated Tetraglyme and Hydrofluoroether as a Stable and Nonflammable Electrolyte for Li-O2 Batteries. , 2018, ACS applied materials & interfaces.

[10]  P. He,et al.  Research progresses on materials and electrode design towards key challenges of Li-air batteries , 2018, Energy Storage Materials.

[11]  D. Versaci,et al.  PEEK‐WC/Nanosponge Membranes for Lithium‐Anode Protection in Rechargeable Li−O2 Batteries , 2018 .

[12]  Yun Jung Lee,et al.  Clarification of Solvent Effects on Discharge Products in Li-O2 Batteries through a Titration Method. , 2018, ACS applied materials & interfaces.

[13]  Wei Shyy,et al.  Advances and challenges in lithium-air batteries , 2017 .

[14]  H. Baltruschat,et al.  The impact of solvent properties on the performance of oxygen reduction and evolution in mixed tetraglyme-dimethyl sulfoxide electrolytes for Li-O2 batteries: Mechanism and stability , 2017 .

[15]  F. Huo,et al.  Effect of oxygen adsorbability on the control of Li2O2 growth in Li-O2 batteries: Implications for cathode catalyst design , 2017 .

[16]  Kwang Uk Moon,et al.  Role of solvents on the oxygen reduction and evolution of rechargeable Li-O2 battery , 2017 .

[17]  Linda F. Nazar,et al.  Advances in understanding mechanisms underpinning lithium–air batteries , 2016, Nature Energy.

[18]  Dean J. Miller,et al.  Facile Synthesis of Boron-Doped rGO as Cathode Material for High Energy Li-O2 Batteries. , 2016, ACS applied materials & interfaces.

[19]  Ye Xu,et al.  Potential-Dependent Generation of O2– and LiO2 and Their Critical Roles in O2 Reduction to Li2O2 in Aprotic Li–O2 Batteries , 2016 .

[20]  Betar M. Gallant,et al.  Three-Dimensional Au Microlattices as Positive Electrodes for Li-O2 Batteries. , 2015, ACS nano.

[21]  Kishan Dholakia,et al.  The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. , 2014, Nature chemistry.

[22]  Yang Shao-Horn,et al.  Chemical Instability of Dimethyl Sulfoxide in Lithium-Air Batteries. , 2014, The journal of physical chemistry letters.

[23]  Shichao Zhang,et al.  Direct Growth of Flower‐Like δ‐MnO2 on Three‐Dimensional Graphene for High‐Performance Rechargeable Li‐O2 Batteries , 2014 .

[24]  Yuhui Chen,et al.  A stable cathode for the aprotic Li-O2 battery. , 2013, Nature materials.

[25]  Daniel Sharon,et al.  Oxidation of Dimethyl Sulfoxide Solutions by Electrochemical Reduction of Oxygen , 2013 .

[26]  Yang Shao-Horn,et al.  Chemical and Morphological Changes of Li–O2 Battery Electrodes upon Cycling , 2012 .

[27]  Kristina Edström,et al.  Ether Based Electrolyte, LiB(CN)4 Salt and Binder Degradation in the Li-O2 Battery Studied by Hard X-ray Photoelectron Spectroscopy (HAXPES) , 2012 .

[28]  J. Nørskov,et al.  Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries. , 2012, The journal of physical chemistry letters.

[29]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .