Matrix regularization of classical Nambu brackets and super p-branes

Abstract We present an explicit matrix algebra regularization of the algebra of volume-preserving diffeomorphisms of the n-torus. That is, we approximate the corresponding classical Nambu brackets using $$ \mathfrak{sl}\left({N}^{\left\lceil \frac{n}{2}\right\rceil },\mathrm{\mathbb{C}}\right) $$ sl N n 2 ℂ -matrices equipped with the finite bracket given by the completely anti-symmetrized matrix product, such that the classical brackets are retrieved in the N → ∞ limit. We then apply this approximation to the super 4-brane in 9 dimensions and give a regularized action in analogy with the matrix regularization of the supermembrane. This action exhibits a reduced gauge symmetry that we discuss from the viewpoint of L∞-algebras in a slight generalization to the construction of Lie 2-algebras from Bagger-Lambert 3-algebras.

[1]  Matsuo Sato Supersymmetry and DLCQ Limit of Lie 3-algebra Model of M-theory , 2011, 1110.2969.

[2]  Matsuo Sato COVARIANT FORMULATION OF M-THEORY , 2009, 0902.1333.

[3]  J. Bagger,et al.  Three-algebras and N=6 Chern-Simons gauge theories , 2008, 0807.0163.

[4]  Yoichiro Nambu Generalized Hamiltonian dynamics , 1973 .

[5]  H. Nicolai,et al.  An introduction to the quantum supermembrane , 2002, hep-th/0201182.

[6]  Richard J. Szabo,et al.  Quantized Nambu–Poisson manifolds and n-Lie algebras , 2010, 1001.3275.

[7]  Nambu quantum mechanics: A Nonlinear generalization of geometric quantum mechanics , 2002, hep-th/0202173.

[8]  Matsuo Sato On the structure constants of volume preserving diffeomorphism algebra , 2014, 1404.0477.

[9]  P. Schupp,et al.  Non-geometric fluxes, quasi-Hopf twist deformations, and nonassociative quantum mechanics , 2013, 1312.1621.

[10]  M. Flato,et al.  Deformation quantization and Nambu Mechanics , 1996, hep-th/9602016.

[11]  M theory as a matrix model: A Conjecture , 1996, hep-th/9610043.

[12]  John C. Baez,et al.  Higher-Dimensional Algebra VI: Lie 2-Algebras , 2003, math/0307263.

[13]  R. Blender,et al.  A Nambu representation of incompressible hydrodynamics using helicity and enstrophy , 1993 .

[14]  Leon Takhtajan On foundation of the generalized Nambu mechanics , 1993 .

[15]  P. Ho,et al.  Nambu bracket and M-theory , 2016, 1603.09534.

[16]  R. Chatterjee Dynamical symmetries and Nambu mechanics , 1995, hep-th/9501141.

[17]  Y. Nutku,et al.  Super-integrable Calogero-type systems admit maximal number of Poisson structures , 2001, nlin/0105056.

[18]  W. Marsden I and J , 2012 .

[19]  J. Figueroa-O’Farrill,et al.  On the Lie-Algebraic Origin of Metric 3-Algebras , 2008, 0809.1086.

[20]  Robert C. Helling,et al.  Supermembranes and M(atrix) Theory , 1998, hep-th/9809103.

[21]  H. Nicolai,et al.  THE SUPERMEMBRANE IS UNSTABLE , 1989 .

[22]  Ternary algebraic structures and their applications in physics , 2000, math-ph/0011023.

[23]  B. Jurčo,et al.  L∞ ‐Algebras, the BV Formalism, and Classical Fields , 2019, Fortschritte der Physik.

[24]  Philippe Gautheron Some remarks concerning Nambu mechanics , 1996 .

[25]  A. Achúcarro,et al.  Super p-Branes , 1987 .

[26]  J. Hoppe DiffAT2, and the curvature of some infinite dimensional manifolds , 1988 .

[27]  H. Sati,et al.  L ∞ -Algebra Connections and Applications to String- and Chern-Simons n-Transport , 2008, 0801.3480.

[28]  P. Dirac An extensible model of the electron , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[29]  Matsuo Sato Four-algebraic extension of the IIB matrix model , 2013, 1304.7904.

[30]  R. Tucker,et al.  Classical and quantum mechanics of free relativistic membranes , 1976 .

[31]  Asymptotic Search for Ground States of SU(2) Matrix Theory , 1997, hep-th/9712133.

[32]  T. Curtright,et al.  Deformation quantization of superintegrable systems and Nambu mechanics , 2002, hep-th/0205063.

[33]  On Zero-Mass Ground States in Super-Membrane Matrix Models , 1997, hep-th/9701119.

[34]  Jens Hoppe,et al.  Quantum theory of a massless relativistic surface and a two-dimensional bound state problem , 1982 .

[35]  Matsuo Sato Extension of IIB Matrix Model by Three-Algebra , 2013, 1304.4796.

[36]  P. Schupp,et al.  Membrane sigma-models and quantization of non-geometric flux backgrounds , 2012, 1207.0926.

[37]  Covariant description of superstrings , 1984 .

[38]  H. Nicolai,et al.  Area-preserving diffeomorphisms and supermembrane Lorentz invariance , 1990 .

[39]  David B Fairlie,et al.  Trigonometric structure constants for new infinite-dimensional algebras , 1989 .

[40]  D. Minic,et al.  On the quantization of Nambu brackets , 1999, hep-th/9906248.

[41]  Toeplitz quantization of Kähler manifolds anggl(N), N→∞ limits , 1993, hep-th/9309134.

[42]  M. Bordemann,et al.  Toeplitz Quantization of Kähler Manifolds and gl(N), N → ∞ , 1993 .

[43]  J. Faulkner On the geometry of inner ideals , 1973 .

[44]  Classical and quantum Nambu mechanics , 2002, hep-th/0212267.

[45]  Paul Adrien Maurice Dirac Generalized Hamiltonian dynamics , 1950 .

[46]  E. Sezgin,et al.  Supermembranes and Eleven-Dimensional Supergravity , 1987 .

[47]  On M-Algebras, the Quantisation of Nambu-Mechanics, and Volume Preserving Diffeomorphisms , 1996, hep-th/9602020.

[48]  Christian Saemann,et al.  Towards an M5‐Brane Model II: Metric String Structures , 2019, Fortschritte der Physik.

[49]  Urs Schreiber,et al.  Cech cocycles for differential characteristic classes -- An infinity-Lie theoretic construction , 2010, 1011.4735.

[50]  Matsuo Sato THREE-ALGEBRA BFSS MATRIX THEORY , 2013, 1304.4430.

[51]  M. Porrati,et al.  Bound states at threshold in supersymmetric quantum mechanics , 1997, hep-th/9708119.

[52]  On Foundation of the Generalized Nambu Mechanics (Second Version) , 2008 .

[53]  D. Fiorenza,et al.  Super-Lie n-algebra extensions, higher WZW models and super-p-branes with tensor multiplet fields , 2013, 1308.5264.

[54]  Hui Liu,et al.  3-Lie algebras realized by cubic matrices , 2014 .

[55]  Algebras of cubic matrices , 2016, 1606.02681.

[56]  Y. Kawamura Cubic Matrix, Nambu Mechanics and Beyond , 2002, hep-th/0207054.

[57]  D-Brane Bound States Redux , 1997, hep-th/9705046.

[58]  P. Aschieri,et al.  Triproducts, nonassociative star products and geometry of R-flux string compactifications , 2015, 1504.03915.

[59]  Witten index and threshold bound states of D-branes , 1997, hep-th/9704098.

[60]  Matsuo Sato Model of M-theory with eleven matrices , 2010, 1003.4694.

[61]  F. Bayen,et al.  Remarks concerning Nambu's generalized mechanics , 1975 .

[62]  Christian Sämann,et al.  Quantized Nambu-Poisson manifolds in a 3-Lie algebra reduced model , 2010, 1012.2236.

[63]  R. Blender,et al.  Hydrodynamic Nambu brackets derived by geometric constraints , 2015, 1510.04832.

[64]  Yoshiharu Kawaniura Cubic matrices, generalized spin algebra and uncertainty relation , 2003 .

[65]  ,et al.  ,in Extensible Model of the Electron , 1961 .

[66]  T. Yoneya Covariantized matrix theory for D-particles , 2016, 1603.06402.

[67]  Christian Sämann,et al.  M-brane models from non-abelian gerbes , 2012, 1203.5757.

[68]  J. Bagger,et al.  Multiple membranes in M-theory , 2012, 1203.3546.

[69]  U. Schreiber,et al.  M-theory from the superpoint , 2017, Letters in Mathematical Physics.

[70]  The cubic chessboard , 2000, math-ph/0004031.

[71]  H. Nicolai,et al.  On the quantum mechanics of supermembranes , 1988 .

[72]  P. Ritter,et al.  Generalized higher gauge theory , 2015, 1512.07554.