Matrix regularization of classical Nambu brackets and super p-branes
暂无分享,去创建一个
[1] Matsuo Sato. Supersymmetry and DLCQ Limit of Lie 3-algebra Model of M-theory , 2011, 1110.2969.
[2] Matsuo Sato. COVARIANT FORMULATION OF M-THEORY , 2009, 0902.1333.
[3] J. Bagger,et al. Three-algebras and N=6 Chern-Simons gauge theories , 2008, 0807.0163.
[4] Yoichiro Nambu. Generalized Hamiltonian dynamics , 1973 .
[5] H. Nicolai,et al. An introduction to the quantum supermembrane , 2002, hep-th/0201182.
[6] Richard J. Szabo,et al. Quantized Nambu–Poisson manifolds and n-Lie algebras , 2010, 1001.3275.
[7] Nambu quantum mechanics: A Nonlinear generalization of geometric quantum mechanics , 2002, hep-th/0202173.
[8] Matsuo Sato. On the structure constants of volume preserving diffeomorphism algebra , 2014, 1404.0477.
[9] P. Schupp,et al. Non-geometric fluxes, quasi-Hopf twist deformations, and nonassociative quantum mechanics , 2013, 1312.1621.
[10] M. Flato,et al. Deformation quantization and Nambu Mechanics , 1996, hep-th/9602016.
[11] M theory as a matrix model: A Conjecture , 1996, hep-th/9610043.
[12] John C. Baez,et al. Higher-Dimensional Algebra VI: Lie 2-Algebras , 2003, math/0307263.
[13] R. Blender,et al. A Nambu representation of incompressible hydrodynamics using helicity and enstrophy , 1993 .
[14] Leon Takhtajan. On foundation of the generalized Nambu mechanics , 1993 .
[15] P. Ho,et al. Nambu bracket and M-theory , 2016, 1603.09534.
[16] R. Chatterjee. Dynamical symmetries and Nambu mechanics , 1995, hep-th/9501141.
[17] Y. Nutku,et al. Super-integrable Calogero-type systems admit maximal number of Poisson structures , 2001, nlin/0105056.
[18] W. Marsden. I and J , 2012 .
[19] J. Figueroa-O’Farrill,et al. On the Lie-Algebraic Origin of Metric 3-Algebras , 2008, 0809.1086.
[20] Robert C. Helling,et al. Supermembranes and M(atrix) Theory , 1998, hep-th/9809103.
[21] H. Nicolai,et al. THE SUPERMEMBRANE IS UNSTABLE , 1989 .
[22] Ternary algebraic structures and their applications in physics , 2000, math-ph/0011023.
[23] B. Jurčo,et al. L∞ ‐Algebras, the BV Formalism, and Classical Fields , 2019, Fortschritte der Physik.
[24] Philippe Gautheron. Some remarks concerning Nambu mechanics , 1996 .
[25] A. Achúcarro,et al. Super p-Branes , 1987 .
[26] J. Hoppe. DiffAT2, and the curvature of some infinite dimensional manifolds , 1988 .
[27] H. Sati,et al. L ∞ -Algebra Connections and Applications to String- and Chern-Simons n-Transport , 2008, 0801.3480.
[28] P. Dirac. An extensible model of the electron , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[29] Matsuo Sato. Four-algebraic extension of the IIB matrix model , 2013, 1304.7904.
[30] R. Tucker,et al. Classical and quantum mechanics of free relativistic membranes , 1976 .
[31] Asymptotic Search for Ground States of SU(2) Matrix Theory , 1997, hep-th/9712133.
[32] T. Curtright,et al. Deformation quantization of superintegrable systems and Nambu mechanics , 2002, hep-th/0205063.
[33] On Zero-Mass Ground States in Super-Membrane Matrix Models , 1997, hep-th/9701119.
[34] Jens Hoppe,et al. Quantum theory of a massless relativistic surface and a two-dimensional bound state problem , 1982 .
[35] Matsuo Sato. Extension of IIB Matrix Model by Three-Algebra , 2013, 1304.4796.
[36] P. Schupp,et al. Membrane sigma-models and quantization of non-geometric flux backgrounds , 2012, 1207.0926.
[37] Covariant description of superstrings , 1984 .
[38] H. Nicolai,et al. Area-preserving diffeomorphisms and supermembrane Lorentz invariance , 1990 .
[39] David B Fairlie,et al. Trigonometric structure constants for new infinite-dimensional algebras , 1989 .
[40] D. Minic,et al. On the quantization of Nambu brackets , 1999, hep-th/9906248.
[41] Toeplitz quantization of Kähler manifolds anggl(N), N→∞ limits , 1993, hep-th/9309134.
[42] M. Bordemann,et al. Toeplitz Quantization of Kähler Manifolds and gl(N), N → ∞ , 1993 .
[43] J. Faulkner. On the geometry of inner ideals , 1973 .
[44] Classical and quantum Nambu mechanics , 2002, hep-th/0212267.
[45] Paul Adrien Maurice Dirac. Generalized Hamiltonian dynamics , 1950 .
[46] E. Sezgin,et al. Supermembranes and Eleven-Dimensional Supergravity , 1987 .
[47] On M-Algebras, the Quantisation of Nambu-Mechanics, and Volume Preserving Diffeomorphisms , 1996, hep-th/9602020.
[48] Christian Saemann,et al. Towards an M5‐Brane Model II: Metric String Structures , 2019, Fortschritte der Physik.
[49] Urs Schreiber,et al. Cech cocycles for differential characteristic classes -- An infinity-Lie theoretic construction , 2010, 1011.4735.
[50] Matsuo Sato. THREE-ALGEBRA BFSS MATRIX THEORY , 2013, 1304.4430.
[51] M. Porrati,et al. Bound states at threshold in supersymmetric quantum mechanics , 1997, hep-th/9708119.
[52] On Foundation of the Generalized Nambu Mechanics (Second Version) , 2008 .
[53] D. Fiorenza,et al. Super-Lie n-algebra extensions, higher WZW models and super-p-branes with tensor multiplet fields , 2013, 1308.5264.
[54] Hui Liu,et al. 3-Lie algebras realized by cubic matrices , 2014 .
[55] Algebras of cubic matrices , 2016, 1606.02681.
[56] Y. Kawamura. Cubic Matrix, Nambu Mechanics and Beyond , 2002, hep-th/0207054.
[57] D-Brane Bound States Redux , 1997, hep-th/9705046.
[58] P. Aschieri,et al. Triproducts, nonassociative star products and geometry of R-flux string compactifications , 2015, 1504.03915.
[59] Witten index and threshold bound states of D-branes , 1997, hep-th/9704098.
[60] Matsuo Sato. Model of M-theory with eleven matrices , 2010, 1003.4694.
[61] F. Bayen,et al. Remarks concerning Nambu's generalized mechanics , 1975 .
[62] Christian Sämann,et al. Quantized Nambu-Poisson manifolds in a 3-Lie algebra reduced model , 2010, 1012.2236.
[63] R. Blender,et al. Hydrodynamic Nambu brackets derived by geometric constraints , 2015, 1510.04832.
[64] Yoshiharu Kawaniura. Cubic matrices, generalized spin algebra and uncertainty relation , 2003 .
[65] P̂,et al. ,in Extensible Model of the Electron , 1961 .
[66] T. Yoneya. Covariantized matrix theory for D-particles , 2016, 1603.06402.
[67] Christian Sämann,et al. M-brane models from non-abelian gerbes , 2012, 1203.5757.
[68] J. Bagger,et al. Multiple membranes in M-theory , 2012, 1203.3546.
[69] U. Schreiber,et al. M-theory from the superpoint , 2017, Letters in Mathematical Physics.
[70] The cubic chessboard , 2000, math-ph/0004031.
[71] H. Nicolai,et al. On the quantum mechanics of supermembranes , 1988 .
[72] P. Ritter,et al. Generalized higher gauge theory , 2015, 1512.07554.