A Machine Learning–Based Approach to Discrimination of Tauopathies Using [ 18F]PM‐PBB3 PET Images

We recently developed a positron emission tomography (PET) probe, [18F]PM‐PBB3, to detect tau lesions in diverse tauopathies, including mixed three‐repeat and four‐repeat (3R + 4R) tau fibrils in Alzheimer's disease (AD) and 4R tau aggregates in progressive supranuclear palsy (PSP). For wider availability of this technology for clinical settings, bias‐free quantitative evaluation of tau images without a priori disease information is needed.

[1]  Ming-Rong Zhang,et al.  PET-based classification of corticobasal syndrome. , 2022, Parkinsonism & related disorders.

[2]  K. Matsuoka,et al.  An optimized reference tissue method for quantification of tau protein depositions in diverse neurodegenerative disorders by PET with 18F-PM-PBB3 (18F-APN-1607) , 2022, NeuroImage.

[3]  M. Jinzaki,et al.  Evaluation of [18F]PI-2620, a second-generation selective tau tracer, for assessing four-repeat tauopathies , 2021, Brain communications.

[4]  Özgür A. Onur,et al.  Binding characteristics of [18F]PI-2620 distinguish the clinically predicted tau isoform in different tauopathies by PET , 2021, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[5]  Virginia M. Y. Lee,et al.  High-Contrast In Vivo Imaging of Tau Pathologies in Alzheimer’s and Non-Alzheimer’s Disease Tauopathies , 2020, Neuron.

[6]  Ming-Rong Zhang,et al.  Radiosynthesis and quality control testing of the tau imaging PET tracer [18 F]PM-PBB3 for clinical applications. , 2020, Journal of labelled compounds & radiopharmaceuticals.

[7]  F. Jessen,et al.  Assessment of 18F-PI-2620 as a Biomarker in Progressive Supranuclear Palsy , 2020, JAMA neurology.

[8]  Virginia M. Y. Lee,et al.  High-Contrast In Vivo Imaging of Tau Pathologies in Alzheimer’s and Non-Alzheimer’s Disease Tauopathies , 2020, Neuron.

[9]  O. Hansson,et al.  Diagnostic Performance of RO948 F 18 Tau Positron Emission Tomography in the Differentiation of Alzheimer Disease From Other Neurodegenerative Disorders , 2020, JAMA neurology.

[10]  John L. Robinson,et al.  Distribution patterns of tau pathology in progressive supranuclear palsy , 2020, Acta Neuropathologica.

[11]  W. M. van der Flier,et al.  Regional [18F]flortaucipir PET is more closely associated with disease severity than CSF p-tau in Alzheimer’s disease , 2020, European Journal of Nuclear Medicine and Molecular Imaging.

[12]  Lisa Delano-Wood,et al.  Is tau in the absence of amyloid on the Alzheimer’s continuum?: A study of discordant PET positivity , 2019, Brain communications.

[13]  J. Seibyl,et al.  Tau PET imaging with 18F-PI-2620 in Patients with Alzheimer Disease and Healthy Controls: A First-in-Humans Study , 2019, The Journal of Nuclear Medicine.

[14]  O. Hansson,et al.  Head-to-head comparison of tau positron emission tomography tracers [18F]flortaucipir and [18F]RO948 , 2019, European Journal of Nuclear Medicine and Molecular Imaging.

[15]  Yue Li,et al.  Test–retest reproducibility of a multi‐atlas automated segmentation tool on multimodality brain MRI , 2019, Brain and behavior.

[16]  Sandra M. Sanabria-Bohórquez,et al.  Cross-sectional associations between [18F]GTP1 tau PET and cognition in Alzheimer's disease , 2019, Neurobiology of Aging.

[17]  L. Dinkelborg,et al.  Discovery and preclinical characterization of [18F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer’s disease and other tauopathies , 2019, European Journal of Nuclear Medicine and Molecular Imaging.

[18]  G. Kerchner,et al.  [18F]GTP1 (Genentech Tau Probe 1), a radioligand for detecting neurofibrillary tangle tau pathology in Alzheimer’s disease , 2019, European Journal of Nuclear Medicine and Molecular Imaging.

[19]  Michael W. Paul Michael Paul Ronald Clifford R. William Jo Weiner Aisen Weiner Aisen Petersen Jack J,et al.  Quantitative 18F-AV1451 Brain Tau PET Imaging in Cognitively Normal Older Adults, Mild Cognitive Impairment, and Alzheimer's Disease Patients , 2019, Front. Neurol..

[20]  Rik Ossenkoppele,et al.  Predicting diagnosis and cognition with 18F-AV-1451 tau PET and structural MRI in Alzheimer's disease , 2019, Alzheimer's & Dementia.

[21]  D. Dickson,et al.  In vivo binding of a tau imaging probe, [11C]PBB3, in patients with progressive supranuclear palsy , 2019, Movement disorders : official journal of the Movement Disorder Society.

[22]  W. Jagust Imaging the evolution and pathophysiology of Alzheimer disease , 2018, Nature Reviews Neuroscience.

[23]  S. Gauthier,et al.  In vivo quantification of neurofibrillary tangles with [18F]MK-6240 , 2018, Alzheimer's Research & Therapy.

[24]  C. Rowe,et al.  Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other conditions , 2018, Nature Reviews Neurology.

[25]  J. Phillips,et al.  Tau PET imaging predicts cognition in atypical variants of Alzheimer's disease , 2018, Human brain mapping.

[26]  Clare E. Mackay,et al.  PET Tau and Amyloid-beta Burden in Mild Alzheimer's Disease: Divergent Relationship with Age, Cognition, and Cerebrospinal Fluid Biomarkers (vol 60, pg 283, 2017) , 2018 .

[27]  John C. Morris,et al.  AV-1451 PET imaging of tau pathology in preclinical Alzheimer disease: Defining a summary measure , 2017, NeuroImage.

[28]  Keith A. Johnson,et al.  18F‐flortaucipir tau positron emission tomography distinguishes established progressive supranuclear palsy from controls and Parkinson disease: A multicenter study , 2017, Annals of neurology.

[29]  Murray Grossman,et al.  Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria , 2017, Movement disorders : official journal of the Movement Disorder Society.

[30]  W. Vanduffel,et al.  Preclinical Evaluation of 18F-JNJ64349311, a Novel PET Tracer for Tau Imaging , 2017, The Journal of Nuclear Medicine.

[31]  Daniel R. Schonhaut,et al.  F-Flortaucipir Tau Positron Emission Tomography Distinguishes Established Progressive Supranuclear Palsy from Controls and Parkinson Disease: A Multicenter Study , 2017 .

[32]  Takashi Kato,et al.  Inter-rater variability of visual interpretation and comparison with quantitative evaluation of 11C-PiB PET amyloid images of the Japanese Alzheimer’s Disease Neuroimaging Initiative (J-ADNI) multicenter study , 2017, European Journal of Nuclear Medicine and Molecular Imaging.

[33]  Maneesha S. Deshpande,et al.  ASSESSMENT OF GAIT AS OUTCOME MEASURE FOLLOWING SENSORY-ENHANCED THERAPY IN PARKINSON’S DISEASE USING UNIFIED PARKINSON’S DISEASE RATING SCALE (PART III) , 2016 .

[34]  Talakad G. Lohith,et al.  Discovery of 6-(Fluoro-(18)F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([(18)F]-MK-6240): A Positron Emission Tomography (PET) Imaging Agent for Quantification of Neurofibrillary Tangles (NFTs). , 2016, Journal of medicinal chemistry.

[35]  A. Joshi,et al.  Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages. , 2016, Brain : a journal of neurology.

[36]  Janna H. Neltner,et al.  Primary age-related tauopathy (PART): a common pathology associated with human aging , 2014, Acta Neuropathologica.

[37]  J. Olszewski,et al.  Progressive Supranuclear Palsy: A Heterogeneous Degeneration Involving the Brain Stem, Basal Ganglia and Cerebellum With Vertical Gaze and Pseudobulbar Palsy, Nuchal Dystonia and Dementia , 2014, Seminars in Neurology.

[38]  Xiaoying Tang,et al.  Bayesian Parameter Estimation and Segmentation in the Multi-Atlas Random Orbit Model , 2013, PloS one.

[39]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[40]  B. Boeve,et al.  Neuropathological features of corticobasal degeneration presenting as corticobasal syndrome or Richardson syndrome. , 2011, Brain : a journal of neurology.

[41]  M. Folstein,et al.  Clinical diagnosis of Alzheimer's disease: Report of the NINCDS—ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease , 2011, Neurology.

[42]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[43]  Michael I. Miller,et al.  Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging , 2009, NeuroImage.

[44]  Arthur W. Toga,et al.  Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: Application to normal elderly and Alzheimer's disease participants , 2009, NeuroImage.

[45]  Tetsuya Suhara,et al.  Longitudinal, Quantitative Assessment of Amyloid, Neuroinflammation, and Anti-Amyloid Treatment in a Living Mouse Model of Alzheimer's Disease Enabled by Positron Emission Tomography , 2007, The Journal of Neuroscience.

[46]  J. Trojanowski,et al.  Tau-mediated neurodegeneration in Alzheimer's disease and related disorders , 2007, Nature Reviews Neuroscience.

[47]  A. Lees,et al.  Pathological tau burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson's syndrome. , 2007, Brain : a journal of neurology.

[48]  K. Arima Ultrastructural characteristics of tau filaments in tauopathies: Immuno‐electron microscopic demonstration of tau filaments in tauopathies , 2006, Neuropathology : official journal of the Japanese Society of Neuropathology.

[49]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[50]  H. Braak,et al.  Neuropathological stageing of Alzheimer-related changes , 2004, Acta Neuropathologica.

[51]  J. Hardy,et al.  The Amyloid Hypothesis of Alzheimer ’ s Disease : Progress and Problems on the Road to Therapeutics , 2009 .

[52]  Patrick R. Hof,et al.  Tau protein isoforms, phosphorylation and role in neurodegenerative disorders 1 1 These authors contributed equally to this work. , 2000, Brain Research Reviews.

[53]  E. Tangalos,et al.  Mild Cognitive Impairment Clinical Characterization and Outcome , 1999 .

[54]  I Litvan,et al.  Validity and Reliability of the Preliminary NINDS Neuropathologic Criteria for Progressive Supranuclear Palsy and Related Disorders , 1996, Journal of neuropathology and experimental neurology.

[55]  I Litvan,et al.  Preliminary NINDS neuropathologic criteria for Steele‐Richardson‐Olszewski syndrome (progressive supranuclear palsy) , 1994, Neurology.

[56]  Demichelis,et al.  Evaluation of the , 1992, Physical review. B, Condensed matter.

[57]  J. Olszewski,et al.  Progressive Supranuclear Palsy: A Heterogeneous Degeneration Involving the Brain Stem, Basal Ganglia and Cerebellum With Vertical Gaze and Pseudobulbar Palsy, Nuchal Dystonia and Dementia , 1964 .