3-rank of ambiguous class groups of cubic Kummer extensions

Let $$k=k_0(\root 3 \of {d})$$ k = k 0 ( d 3 ) be a cubic Kummer extension of $$k_0=\mathbb {Q}(\zeta _3)$$ k 0 = Q ( ζ 3 ) with $$d>1$$ d > 1 a cube-free integer and $$\zeta _3$$ ζ 3 a primitive third root of unity. Denote by $$C_{k,3}^{(\sigma )}$$ C k , 3 ( σ ) the 3-group of ambiguous classes of the extension $$k/k_0$$ k / k 0 with relative group $$G={\text {Gal}}(k/k_0)=\langle \sigma \rangle $$ G = Gal ( k / k 0 ) = ⟨ σ ⟩ . The aims of this paper are to characterize all extensions $$k/k_0$$ k / k 0 with cyclic 3-group of ambiguous classes $$C_{k,3}^{(\sigma )}$$ C k , 3 ( σ ) of order 3, to investigate the multiplicity m ( f ) of the conductors f of these abelian extensions $$k/k_0$$ k / k 0 , and to classify the fields k according to the cohomology of their unit groups $$E_{k}$$ E k as Galois modules over G . The techniques employed for reaching these goals are relative 3-genus fields, Hilbert norm residue symbols, quadratic 3-ring class groups modulo f , the Herbrand quotient of $$E_{k}$$ E k , and central orthogonal idempotents. All theoretical achievements are underpinned by extensive computational results.

[1]  Hideo Wada On Cubic Galois Extensions of Q( , 1970 .

[2]  Shinju Kobayashi,et al.  On the 3-rank of the ideal class groups of certain pure cubic fields , 1973 .

[3]  Daniel C. Mayer Multiplicities of dihedral discriminants , 1992 .

[4]  P. Barrucand,et al.  A Computational Technique for Determining the Class Number of a Pure Cubic Field , 1976 .

[5]  F. Halter-Koch Eine Bemerkung über kubische Einheiten , 1976 .

[6]  F. Gerth On 3-class groups of cyclic cubic extensions of certain number fields☆ , 1976 .

[7]  David Hilbert,et al.  Die Theorie der algebraischen Zahlkörper , 1932 .

[8]  F. Gerth On 3-class groups of pure cubic fields. , 1975 .

[9]  F. Gerth Sylow 3-subgroups of ideal class groups of certain cubic fields , 1973 .

[10]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[11]  Shinju Kobayashi Complete determination of the 3-class rank in pure cubic fields*) , 1977 .

[12]  C. Herz,et al.  Construction of class fields , 1966 .

[13]  Gerald J. Janusz,et al.  Algebraic Number Fields , 2005 .

[14]  D. C. Mayer,et al.  Structure of relative genus fields of cubic Kummer extensions , 2018, Boletín de la Sociedad Matemática Mexicana.

[15]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[16]  R. Odoni A CLASSICAL INTRODUCTION TO MODERN NUMBER THEORY (Graduate Texts in Mathematics, 84) , 1984 .

[17]  I. Satake,et al.  A note on the group of units of an algebraic number field: J. Math. Pure and Appl., (9) 35 (1956), 189–192 , 2001 .

[18]  Hirotomo Kobayashi Class numbers of pure quintic fields , 2016 .

[19]  David Grant A proof of quintic reciprocity using the arithmetic of y² = x⁵ + 1/4 , 1996 .

[20]  T. Honda Pure cubic fields whose class numbers are multiples of three , 1971 .

[21]  W. Bosma,et al.  HANDBOOK OF MAGMA FUNCTIONS , 2011 .

[22]  Jacques Herbrand Sur les théorèmes du genre principal et des idéaux principaux , 1933 .

[23]  H. C. Williams Determination of principal factors in (√) and (\root3\of) , 1982 .

[24]  Harvey Cohn,et al.  A rational genus, class number divisibility, and unit theory for pure cubic fields , 1970 .

[25]  D. C. Mayer Quadratic p-ring spaces for counting dihedral fields , 2014, 1403.3906.

[26]  H. Cohn,et al.  Remarks on principal factors in a relative cubic field , 1971 .