Central and local limit theorems for RNA structures.

A k-noncrossing RNA pseudoknot structure is a graph over {1,...,n} without 1-arcs, i.e. arcs of the form (i,i+1) and in which there exists no k-set of mutually intersecting arcs. In particular, RNA secondary structures are 2-noncrossing RNA structures. In this paper we prove a central and a local limit theorem for the distribution of the number of 3-noncrossing RNA structures over n nucleotides with exactly h bonds. Our analysis employs the generating function of k-noncrossing RNA pseudoknot structures and the asymptotics for the coefficients. The results of this paper explain the findings on the number of arcs of RNA secondary structures obtained by molecular folding algorithms and are of relevance for prediction algorithms of k-noncrossing RNA structures.

[1]  Hsien-Kuei Hwang,et al.  LARGE DEVIATIONS OF COMBINATORIAL DISTRIBUTIONS II. LOCAL LIMIT THEOREMS , 1998 .

[2]  Temple F. Smith,et al.  Rapid dynamic programming algorithms for RNA secondary structure , 1986 .

[3]  P. Schuster,et al.  Statistics of RNA melting kinetics , 2004, European Biophysics Journal.

[4]  F. H. D. van Batenburg,et al.  PseudoBase: structural information on RNA pseudoknots , 2001, Nucleic Acids Res..

[5]  David Sankoff,et al.  RNA secondary structures and their prediction , 1984 .

[6]  Peter F. Stadler,et al.  Combinatorics of RNA Secondary Structures , 1998, Discret. Appl. Math..

[7]  B. Lindström On the Vector Representations of Induced Matroids , 1973 .

[8]  M. Waterman Secondary Structure of Single-Stranded Nucleic Acidst , 1978 .

[9]  H. Varmus,et al.  An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Christian M. Reidys,et al.  Combinatorics of RNA Structures with Pseudoknots , 2007, Bulletin of mathematical biology.

[11]  Jiunn-Liang Chen,et al.  Secondary Structure of Vertebrate Telomerase RNA , 2000, Cell.

[12]  T. Pan,et al.  Domain structure of the ribozyme from eubacterial ribonuclease P. , 1996, RNA.

[13]  Philippe Flajolet,et al.  Singularity analysis, Hadamard products, and tree recurrences , 2003 .

[14]  I. Gessel,et al.  Random walk in a Weyl chamber , 1992 .

[15]  Christian M. Reidys,et al.  Asymptotic Enumeration of RNA Structures with Pseudoknots , 2007, Bulletin of mathematical biology.

[16]  Zhicheng Gao,et al.  Central and local limit theorems applied to asymptotic enumeration IV: multivariate generating functions , 1992 .

[17]  Michael S. Waterman,et al.  Linear Trees and RNA Secondary Structure , 1994, Discret. Appl. Math..

[18]  J. A. Fill,et al.  Singularity analysis, Hadamard products, and tree recurrences , 2003, math/0306225.

[19]  L. Gold,et al.  RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Luc Jaeger,et al.  RNA pseudoknots , 1992, Current Biology.

[21]  Rosena R. X. Du,et al.  Crossings and nestings of matchings and partitions , 2005, math/0501230.

[22]  J. McCaskill The equilibrium partition function and base pair binding probabilities for RNA secondary structure , 1990, Biopolymers.

[23]  P. Schuster,et al.  Algorithm independent properties of RNA secondary structure predictions , 1996, European Biophysics Journal.

[24]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[25]  R. Gutell,et al.  A comparison of thermodynamic foldings with comparatively derived structures of 16S and 16S-like rRNAs. , 1995, RNA.

[26]  Edward A. Bender,et al.  Central and Local Limit Theorems Applied to Asymptotic Enumeration , 1973, J. Comb. Theory A.