Central and local limit theorems for RNA structures.
暂无分享,去创建一个
[1] Hsien-Kuei Hwang,et al. LARGE DEVIATIONS OF COMBINATORIAL DISTRIBUTIONS II. LOCAL LIMIT THEOREMS , 1998 .
[2] Temple F. Smith,et al. Rapid dynamic programming algorithms for RNA secondary structure , 1986 .
[3] P. Schuster,et al. Statistics of RNA melting kinetics , 2004, European Biophysics Journal.
[4] F. H. D. van Batenburg,et al. PseudoBase: structural information on RNA pseudoknots , 2001, Nucleic Acids Res..
[5] David Sankoff,et al. RNA secondary structures and their prediction , 1984 .
[6] Peter F. Stadler,et al. Combinatorics of RNA Secondary Structures , 1998, Discret. Appl. Math..
[7] B. Lindström. On the Vector Representations of Induced Matroids , 1973 .
[8] M. Waterman. Secondary Structure of Single-Stranded Nucleic Acidst , 1978 .
[9] H. Varmus,et al. An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. , 1992, Proceedings of the National Academy of Sciences of the United States of America.
[10] Christian M. Reidys,et al. Combinatorics of RNA Structures with Pseudoknots , 2007, Bulletin of mathematical biology.
[11] Jiunn-Liang Chen,et al. Secondary Structure of Vertebrate Telomerase RNA , 2000, Cell.
[12] T. Pan,et al. Domain structure of the ribozyme from eubacterial ribonuclease P. , 1996, RNA.
[13] Philippe Flajolet,et al. Singularity analysis, Hadamard products, and tree recurrences , 2003 .
[14] I. Gessel,et al. Random walk in a Weyl chamber , 1992 .
[15] Christian M. Reidys,et al. Asymptotic Enumeration of RNA Structures with Pseudoknots , 2007, Bulletin of mathematical biology.
[16] Zhicheng Gao,et al. Central and local limit theorems applied to asymptotic enumeration IV: multivariate generating functions , 1992 .
[17] Michael S. Waterman,et al. Linear Trees and RNA Secondary Structure , 1994, Discret. Appl. Math..
[18] J. A. Fill,et al. Singularity analysis, Hadamard products, and tree recurrences , 2003, math/0306225.
[19] L. Gold,et al. RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. , 1992, Proceedings of the National Academy of Sciences of the United States of America.
[20] Luc Jaeger,et al. RNA pseudoknots , 1992, Current Biology.
[21] Rosena R. X. Du,et al. Crossings and nestings of matchings and partitions , 2005, math/0501230.
[22] J. McCaskill. The equilibrium partition function and base pair binding probabilities for RNA secondary structure , 1990, Biopolymers.
[23] P. Schuster,et al. Algorithm independent properties of RNA secondary structure predictions , 1996, European Biophysics Journal.
[24] R. Graham,et al. Handbook of Combinatorics , 1995 .
[25] R. Gutell,et al. A comparison of thermodynamic foldings with comparatively derived structures of 16S and 16S-like rRNAs. , 1995, RNA.
[26] Edward A. Bender,et al. Central and Local Limit Theorems Applied to Asymptotic Enumeration , 1973, J. Comb. Theory A.