Longitudinal data analysis (repeated measures) in clinical trials.

Longitudinal data is often collected in clinical trials to examine the effect of treatment on the disease process over time. This paper reviews and summarizes much of the methodological research on longitudinal data analysis from the perspective of clinical trials. We discuss methodology for analysing Gaussian and discrete longitudinal data and show how these methods can be applied to clinical trials data. We illustrate these methods with five examples of clinical trials with longitudinal outcomes. We also discuss issues of particular concern in clinical trials including sequential monitoring and adjustments for missing data. A review of current software for analysing longitudinal data is also provided. Published in 1999 by John Wiley & Sons, Ltd. This article is a US Government work and is the public domain in the United States.

[1]  P S Albert,et al.  A Transitional Model for Longitudinal Binary Data Subject to Nonignorable Missing Data , 2000, Biometrics.

[2]  R Z Omar,et al.  Analysing repeated measurements data: a practical comparison of methods. , 1999, Statistics in medicine.

[3]  C. Frost,et al.  Use of hierarchical models for meta-analysis: experience in the metabolic ward studies of diet and blood cholesterol. , 1999, Statistics in medicine.

[4]  P. Albert,et al.  A two-state Markov chain for heterogeneous transitional data: a quasi-likelihood approach. , 1998, Statistics in medicine.

[5]  H. Barnhart,et al.  Goodness-of-fit tests for GEE modeling with binary responses. , 1998, Biometrics.

[6]  Scott L. Zeger,et al.  Lorelogram: A Regression Approach to Exploring Dependence in Longitudinal Categorical Responses , 1998 .

[7]  J K Lindsey,et al.  On the appropriateness of marginal models for repeated measurements in clinical trials. , 1998, Statistics in medicine.

[8]  Paul S. Albert,et al.  Modeling Repeated Measures with Monotonic Ordinal Responses and Misclassification, with Applications to Studying Maturation , 1997 .

[9]  Nan M. Laird,et al.  Using the General Linear Mixed Model to Analyse Unbalanced Repeated Measures and Longitudinal Data , 1997 .

[10]  N. Geller,et al.  An extension of stochastic curtailment for incompletely reported and classified recurrent events: the Multicenter Study of Hydroxyurea in Sickle Cell Anemia (MSH). , 1997, Controlled clinical trials.

[11]  P S Albert,et al.  A generalized estimating equation approach for modeling random length binary vector data. , 1997, Biometrics.

[12]  K Y Liang,et al.  Sample size calculations for studies with correlated observations. , 1997, Biometrics.

[13]  R J Cook,et al.  Marginal analysis of recurrent events and a terminating event. , 1997, Statistics in medicine.

[14]  B. Turnbull,et al.  Regression models for recurrent event data: parametric random effects models with measurement error. , 1997, Statistics in medicine.

[15]  M. Kenward,et al.  The analysis of longitudinal ordinal data with nonrandom drop-out , 1997 .

[16]  R. Cook,et al.  A logistic-bivariate normal model for overdispersed two-state Markov processes. , 1997, Biometrics.

[17]  R J Cook,et al.  Interim monitoring of longitudinal comparative studies with recurrent event responses. , 1996, Biometrics.

[18]  B. Qaqish,et al.  Deletion diagnostics for generalised estimating equations , 1996 .

[19]  S. Zeger,et al.  Marginal Regression Models for Clustered Ordinal Measurements , 1996 .

[20]  Michael R. Kosorok,et al.  The Analysis of Longitudinal Ordinal Response Data in Continuous Time , 1996 .

[21]  E. Vonesh,et al.  Goodness-of-fit in generalized nonlinear mixed-effects models. , 1996, Biometrics.

[22]  R J Cook,et al.  Robust tests for treatment comparisons based on recurrent event responses. , 1996, Biometrics.

[23]  Harvey Goldstein,et al.  Improved Approximations for Multilevel Models with Binary Responses , 1996 .

[24]  G. Verbeke,et al.  A Linear Mixed-Effects Model with Heterogeneity in the Random-Effects Population , 1996 .

[25]  David L. DeMets,et al.  Sequential monitoring of clinical trials with correlated responses , 1996 .

[26]  R. Hiller,et al.  Associations of types of lens opacities between and within eyes of individuals: an application of second-order generalized estimating equations. The Framingham Eye Studies Group. , 1996, Statistics in medicine.

[27]  J. Rochon Accounting for Covariates Observed Post Randomization for Discrete and Continuous Repeated Measures Data , 1996 .

[28]  R J Cook,et al.  The design and analysis of randomized trials with recurrent events. , 1995, Statistics in medicine.

[29]  P S Albert,et al.  A generalized estimating equations approach for spatially correlated binary data: applications to the analysis of neuroimaging data. , 1995, Biometrics.

[30]  A. Sampson,et al.  MULTIPLE POPULATION MODELS FOR MULTIVARIATE RANDOM LENGTH DATA-WITH APPLICATIONS IN CLINICAL TRIALS , 1995 .

[31]  Christopher H. Morrell,et al.  Estimating Unknown Transition Times Using a Piecewise Nonlinear Mixed-Effects Model in Men with Prostate Cancer , 1995 .

[32]  J. Robins,et al.  Analysis of semiparametric regression models for repeated outcomes in the presence of missing data , 1995 .

[33]  J. Rochon Supplementing the Intent-to-Treat Analysis: Accounting for Covariates Observed Postrandomization in Clinical Trials , 1995 .

[34]  G. Fitzmaurice,et al.  A caveat concerning independence estimating equations with multivariate binary data. , 1995, Biometrics.

[35]  D. Follmann,et al.  An approximate generalized linear model with random effects for informative missing data. , 1995, Biometrics.

[36]  P. Diggle Analysis of Longitudinal Data , 1995 .

[37]  A. Rotnitzky,et al.  A note on the bias of estimators with missing data. , 1994, Biometrics.

[38]  H Goldstein,et al.  Multilevel time series models with applications to repeated measures data. , 1994, Statistics in medicine.

[39]  S. Lipsitz,et al.  Analysis of repeated categorical data using generalized estimating equations. , 1994, Statistics in medicine.

[40]  G. Molenberghs,et al.  Marginal Modeling of Correlated Ordinal Data Using a Multivariate Plackett Distribution , 1994 .

[41]  A. Agresti,et al.  Simultaneously Modeling Joint and Marginal Distributions of Multivariate Categorical Responses , 1994 .

[42]  Richard H. Jones,et al.  Longitudinal Data with Serial Correlation : A State-Space Approach , 1994 .

[43]  M. Kenward,et al.  Informative Drop‐Out in Longitudinal Data Analysis , 1994 .

[44]  R F Woolson,et al.  Slope estimation in the presence of informative right censoring: modeling the number of observations as a geometric random variable. , 1994, Biometrics.

[45]  N. Geller,et al.  testing treatment efficacy in clinical trials with repeated binary measurements and missing observations , 1994 .

[46]  S W Lagakos,et al.  Size and power of two-sample tests of repeated measures data. , 1993, Biometrics.

[47]  M Lefkopoulou,et al.  Global tests for multiple binary outcomes. , 1993, Biometrics.

[48]  J. R. Landis,et al.  The analysis of longitudinal polytomous data: generalized estimating equations and connections with weighted least squares. , 1993, Biometrics.

[49]  J. Neuhaus Estimation efficiency and tests of covariate effects with clustered binary data. , 1993, Biometrics.

[50]  M. Espeland,et al.  Estimating incidence and diagnostic error rates for bivariate progressive processes. , 1993, Biometrics.

[51]  D. Zucker,et al.  Sequential monitoring of clinical trials: the role of information and Brownian motion. , 1993, Statistics in medicine.

[52]  Kung-Yee Liang,et al.  Prediction of Random Effects in the Generalized Linear Model , 1993 .

[53]  N. Laird,et al.  A likelihood-based method for analysing longitudinal binary responses , 1993 .

[54]  Mark R. Conaway,et al.  Non-ignorable Non-response Models for Time-ordered Categorical Variables , 1993 .

[55]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[56]  Christl A. Donnelly,et al.  Review papers : Longitudinal studies with continuous responses , 1992 .

[57]  J M Neuhaus,et al.  Statistical methods for longitudinal and clustered designs with binary responses , 1992, Statistical methods in medical research.

[58]  S. Zeger,et al.  Multivariate Regression Analyses for Categorical Data , 1992 .

[59]  James Rochon,et al.  ARMA Covariance Structures with Time Heteroscedasticity for Repeated Measures Experiments , 1992 .

[60]  M C Wu,et al.  Sequential monitoring for comparison of changes in a response variable in clinical studies. , 1992, Biometrics.

[61]  J. Jaffe,et al.  A controlled trial of buprenorphine treatment for opioid dependence. , 1992, JAMA.

[62]  E. Vonesh,et al.  Mixed-effects nonlinear regression for unbalanced repeated measures. , 1992, Biometrics.

[63]  M. Feinleib,et al.  Statistical Models for Longitudinal Studies of Health , 1992 .

[64]  T A Louis,et al.  Random effects models with non-parametric priors. , 1992, Statistics in medicine.

[65]  J M Neuhaus,et al.  An annotated bibliography of methods for analysing correlated categorical data. , 1992, Statistics in medicine.

[66]  R. Weiss,et al.  Residual plots for repeated measures. , 1992, Statistics in medicine.

[67]  David L. DeMets,et al.  Sequential Comparison of Changes with Repeated Measurements Data , 1991 .

[68]  P. Albert,et al.  The design of a panel study under an alternating Poisson process assumption. , 1991, Biometrics.

[69]  J. Kalbfleisch,et al.  A Comparison of Cluster-Specific and Population-Averaged Approaches for Analyzing Correlated Binary Data , 1991 .

[70]  Scott L. Zeger,et al.  Generalized linear models with random e ects: a Gibbs sampling approach , 1991 .

[71]  B W Turnbull,et al.  Analysis of multi-type recurrent events in longitudinal studies; application to a skin cancer prevention trial. , 1990, Biometrics.

[72]  L. Zhao,et al.  Correlated binary regression using a quadratic exponential model , 1990 .

[73]  P. Thall,et al.  Some covariance models for longitudinal count data with overdispersion. , 1990, Biometrics.

[74]  D. Bates,et al.  Nonlinear mixed effects models for repeated measures data. , 1990, Biometrics.

[75]  John M. Lachin,et al.  Interim analyses with repeated measurements in a sequential clinical trial , 1990 .

[76]  D. Hand,et al.  Analysis of Repeated Measures , 1990 .

[77]  A J Petkau,et al.  Systemic lymphoblastoid interferon therapy in chronic progressive multiple Sclerosis. I. Clinical and MRI evaluation , 1990, Neurology.

[78]  N. Jewell,et al.  Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data , 1990 .

[79]  Mark A. Espeland,et al.  Joint Estimation of Incidence and Diagnostic Error Rates from Irregular Longitudinal Data , 1989 .

[80]  K. Bailey,et al.  Estimation and comparison of changes in the presence of informative right censoring: conditional linear model. , 1989, Biometrics.

[81]  G. Reinsel,et al.  Models for Longitudinal Data with Random Effects and AR(1) Errors , 1989 .

[82]  L. Ryan,et al.  ASSESSING NORMALITY IN RANDOM EFFECTS MODELS , 1989 .

[83]  Christine Waternaux,et al.  Methods for Analysis of Longitudinal Data: Blood-Lead Concentrations and Cognitive Development , 1989 .

[84]  Diane Lambert,et al.  Generalizing Logistic Regression by Nonparametric Mixing , 1989 .

[85]  R W Helms,et al.  Maximum likelihood estimation for incomplete repeated-measures experiments under an ARMA covariance structure. , 1989, Biometrics.

[86]  L. J. Wei,et al.  Regression analysis of multivariate incomplete failure time data by modeling marginal distributions , 1989 .

[87]  D. Bates,et al.  Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data , 1988 .

[88]  L. J. Wei,et al.  Nonparametric methods for analyzing incomplete nondecreasing repeated measurements. , 1988, Biometrics.

[89]  R. Prentice,et al.  Correlated binary regression with covariates specific to each binary observation. , 1988, Biometrics.

[90]  P. Albert,et al.  Models for longitudinal data: a generalized estimating equation approach. , 1988, Biometrics.

[91]  D. N. Geary Sequential testing in clinical trials with repeated measurements , 1988 .

[92]  Raymond J. Carroll,et al.  Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process , 1988 .

[93]  P F Thall,et al.  Mixed Poisson likelihood regression models for longitudinal interval count data. , 1988, Biometrics.

[94]  S. Zeger,et al.  Markov regression models for time series: a quasi-likelihood approach. , 1988, Biometrics.

[95]  M. Halperin,et al.  Stochastic curtailing for comparison of slopes in longitudinal studies. , 1987, Controlled clinical trials.

[96]  T. Louis,et al.  Influence Analysis of Generalized Least Squares Estimators , 1987 .

[97]  J. Lawless Regression Methods for Poisson Process Data , 1987 .

[98]  E. Vonesh,et al.  Efficient inference for random-coefficient growth curve models with unbalanced data. , 1987, Biometrics.

[99]  N L Geller,et al.  The analysis of multiple endpoints in clinical trials. , 1987, Biometrics.

[100]  Ludwig Fahrmeir,et al.  REGRESSION MODELS FOR NON‐STATIONARY CATEGORICAL TIME SERIES , 1987 .

[101]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[102]  K Y Liang,et al.  Longitudinal data analysis for discrete and continuous outcomes. , 1986, Biometrics.

[103]  Lee-Jen Wei,et al.  Combining dependent tests with incomplete repeated measurements , 1985 .

[104]  J. Ware Linear Models for the Analysis of Longitudinal Studies , 1985 .

[105]  E. Rodin Temporal lobe epilepsy and the Bear‐Fedio personality inventory , 1985, Neurology.

[106]  J. Kalbfleisch,et al.  The Analysis of Panel Data under a Markov Assumption , 1985 .

[107]  M. Palmer Clinical Trials: A Practical Approach , 1985 .

[108]  J. Ware,et al.  Random-effects models for serial observations with binary response. , 1984, Biometrics.

[109]  John M. Lachin,et al.  Two-Sample Asymptotically Distribution-Free Tests for Incomplete Multivariate Observations , 1984 .

[110]  Max Halperin,et al.  More flexible sequential and non-sequential designs in long-term clinical trial , 1984 .

[111]  K. K. Lan,et al.  Discrete sequential boundaries for clinical trials , 1983 .

[112]  Eric V. Slud,et al.  Two-Sample Repeated Significance Tests Based on the Modified Wilcoxon Statistic , 1982 .

[113]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[114]  P. O'Brien,et al.  A multiple testing procedure for clinical trials. , 1979, Biometrics.

[115]  S. Pocock Group sequential methods in the design and analysis of clinical trials , 1977 .

[116]  D. Cox,et al.  The analysis of binary data , 1971 .

[117]  Calyampudi R. Rao,et al.  The theory of least squares when the parameters are stochastic and its application to the analysis of growth curves. , 1965, Biometrika.

[118]  R. Potthoff,et al.  A generalized multivariate analysis of variance model useful especially for growth curve problems , 1964 .

[119]  Calyampudi R. Rao SOME PROBLEMS INVOLVING LINEAR HYPOTHESES IN MULTIVARIATE ANALYSIS , 1959 .

[120]  C. R. Rao,et al.  Some statistical methods for comparison of growth curves. , 1958 .