Stellar Population Astrophysics (SPA) with TNG

Context. Open clusters are excellent tracers of the chemical evolution of the Galactic disc. The spatial distribution of their elemental abundances, through the analysis of high-quality and high-resolution spectra, provides insight into the chemical evolution and mechanisms of element nucleosynthesis in regions characterised by different conditions (e.g. star formation efficiency and metallicity). Aims. In the framework of the Stellar Population Astrophysics (SPA) project, we present new observations and spectral analysis of four sparsely studied open clusters located in the solar neighbourhood, namely Collinder 350, Gulliver 51, NGC 7044, and Ruprecht 171. Methods. We exploit the HARPS-N spectrograph at the TNG telescope to acquire high-resolution optical spectra for 15 member stars of four clusters. We derive stellar parameters (Teff, log g, [Fe/H] and ξ) using both the equivalent width (EW) analysis and the spectral fitting technique. We compute elemental abundances for light, α-, iron-peak, and n-capture elements using the EW measurement approach. We investigate the origin of the correlation between metallicity and stellar parameters derived with the EW method for the coolest stars of the sample (Teff <  4300 K). The correlation is likely due to the challenging continuum setting and to a general inaccuracy of model atmospheres used to reproduce the conditions of very cool giant stars. Results. We locate the properties of our clusters in the radial distributions of metallicity and abundance ratios, comparing our results with clusters from the Gaia-ESO and APOGEE surveys. We present the [X/Fe]−[Fe/H] and [X/Fe]−RGC trends for elements in common between the two surveys. Finally, we derive the C and Li abundances as a function of the evolutionary phase and compare them with theoretical models. Conclusions. The SPA survey, with its high-resolution spectra, allows us to fully characterise the chemistry of nearby clusters. With a single set of spectra, we provide chemical abundances for a variety of chemical elements, which are comparable to those obtained in two of the largest surveys combined. The metallicities and abundance ratios of our clusters fit very well in the radial distributions defined by the recent literature, reinforcing the importance of star clusters to outline the spatial distribution of abundances in our Galaxy. Moreover, the abundances of C and Li, modified by stellar evolution during the giant phase, agree with evolutionary prescriptions (rotation-induced mixing) for their masses and metallicities.

[1]  G. Carraro,et al.  The Gaia-ESO survey: 3D NLTE abundances in the open cluster NGC 2420 suggest atomic diffusion and turbulent mixing are at the origin of chemical abundance variations , 2020, Astronomy & Astrophysics.

[2]  Li Chen,et al.  Exploring open cluster properties with Gaia and LAMOST , 2020, Astronomy & Astrophysics.

[3]  Sergey E. Koposov,et al.  The Gaia-ESO survey: the non-universality of the age–chemical-clocks–metallicity relations in the Galactic disc , 2020, Astronomy & Astrophysics.

[4]  R. Klessen,et al.  The Physics of Star Cluster Formation and Evolution , 2020, Space Science Reviews.

[5]  S. Desidera,et al.  How Magnetic Activity Alters What We Learn from Stellar Spectra , 2020, The Astrophysical Journal.

[6]  G. Zhao,et al.  Open clusters as tracers on radial migration of the galactic disc , 2020, 2004.09382.

[7]  F. Anders,et al.  Painting a portrait of the Galactic disc with its stellar clusters , 2020, Astronomy & Astrophysics.

[8]  M. Bellazzini,et al.  Gaia DR2 Color–Temperature Relations Based on Infrared Flux Method Results , 2020, Research Notes of the AAS.

[9]  M. Schultheis,et al.  Detailed Abundances in the Galactic Center: Evidence of a Metal-rich Alpha-enhanced Stellar Population , 2020, The Astrophysical Journal.

[10]  D. A. García-Hernández,et al.  The Open Cluster Chemical Abundances and Mapping Survey. IV. Abundances for 128 Open Clusters Using SDSS/APOGEE DR16 , 2020, The Astronomical Journal.

[11]  Rosa M. Badia,et al.  Hunting for open clusters in Gaia DR2: 582 new open clusters in the Galactic disc , 2020, Astronomy & Astrophysics.

[12]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: a new approach to chemically characterising young open clusters , 2020, Astronomy & Astrophysics.

[13]  G. Carraro,et al.  The Gaia–ESO Survey: Carbon Abundance in the Galactic Thin and Thick Disks , 2019, The Astrophysical Journal.

[14]  F. Anders,et al.  Clusters and mirages: cataloguing stellar aggregates in the Milky Way , 2019, Astronomy & Astrophysics.

[15]  S. Lucatello,et al.  Stellar population astrophysics (SPA) with the TNG , 2019, Astronomy & Astrophysics.

[16]  X. Pang,et al.  A Catalog of Newly Identified Star Clusters in Gaia DR2 , 2019, The Astrophysical Journal Supplement Series.

[17]  E. Dalessandro,et al.  Stellar population astrophysics (SPA) with the TNG , 2019, Astronomy & Astrophysics.

[18]  F. Anders,et al.  OCCASO – III. Iron peak and α elements of 18 open clusters. Comparison with chemical evolution models and field stars , 2019, Monthly Notices of the Royal Astronomical Society.

[19]  C. McKee,et al.  How do bound star clusters form? , 2019, Monthly Notices of the Royal Astronomical Society.

[20]  M. Rainer,et al.  Stellar population astrophysics (SPA) with the TNG , 2019, Astronomy & Astrophysics.

[21]  H. Monteiro,et al.  Distances and ages from isochrone fits of 150 open clusters using Gaia DR2 data , 2019, Monthly Notices of the Royal Astronomical Society.

[22]  W. Dias,et al.  Nearly coeval intermediate-age Milky Way star clusters at very different dynamics evolutionary stages , 2019, Monthly Notices of the Royal Astronomical Society.

[23]  K. Covey,et al.  Untangling the Galaxy. I. Local Structure and Star Formation History of the Milky Way , 2019, The Astronomical Journal.

[24]  Sergey E. Koposov,et al.  The Gaia-ESO survey: Calibrating a relationship between age and the [C/N] abundance ratio with open clusters , 2019, Astronomy & Astrophysics.

[25]  H. Ann,et al.  207 New Open Star Clusters within 1 kpc from Gaia Data Release 2. , 2019, 1907.06872.

[26]  D. Bossini,et al.  Extended halo of NGC 2682 (M 67) from Gaia DR2 , 2019, Astronomy & Astrophysics.

[27]  S. Roser,et al.  Praesepe (NGC 2632) and its tidal tails , 2019, Astronomy & Astrophysics.

[28]  J. Alves,et al.  Extended stellar systems in the solar neighborhood , 2019, Astronomy & Astrophysics.

[29]  J. Alves,et al.  Extended stellar systems in the solar neighborhood , 2019, Astronomy & Astrophysics.

[30]  S. Blanco-Cuaresma,et al.  A phylogenetic approach to chemical tagging , 2018, Astronomy & Astrophysics.

[31]  E. Feigelson,et al.  Kinematics in Young Star Clusters and Associations with Gaia DR2 , 2018, The Astrophysical Journal.

[32]  A. Casey,et al.  Chemical Inhomogeneities in the Pleiades: Signatures of Rocky-forming Material in Stellar Atmospheres , 2018, The Astrophysical Journal.

[33]  S. Martell,et al.  The GALAH survey and Gaia DR2: (non-)existence of five sparse high-latitude open clusters , 2018, Monthly Notices of the Royal Astronomical Society.

[34]  Gang Zhao,et al.  The Formation and Evolution of Galactic Disks with APOGEE and the Gaia Survey , 2018, The Astrophysical Journal.

[35]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: the origin and evolution of s-process elements , 2018, Astronomy & Astrophysics.

[36]  S. Martell,et al.  The Gaia-ESO Survey: impact of extra mixing on C and N abundances of giant stars , 2018, Astronomy & Astrophysics.

[37]  R. Carrera,et al.  A Gaia DR2 view of the open cluster population in the Milky Way , 2018, Astronomy & Astrophysics.

[38]  T. Cantat-Gaudin,et al.  A new method for unveiling open clusters in Gaia , 2018, Astronomy & Astrophysics.

[39]  C. Bailer-Jones,et al.  Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Gaia Data Release 2 , 2018, The Astronomical Journal.

[40]  P. J. Richards,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[41]  J. J. González-Vidal,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[42]  C. Bailer-Jones,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[43]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: a kinematical and dynamical study of four young open clusters , 2018, Astronomy & Astrophysics.

[44]  E. Schilbach,et al.  Reanalysis of nearby open clusters using Gaia DR1/TGAS and HSOY , 2018, Astronomy & Astrophysics.

[45]  A. Krone-Martins,et al.  Characterising open clusters in the solar neighbourhood with the Tycho-Gaia Astrometric Solution , 2018, Astronomy & Astrophysics.

[46]  F. Anders,et al.  NGC 6705 a young $\alpha$-enhanced Open Cluster from OCCASO data , 2017, 1710.11069.

[47]  Keivan G. Stassun,et al.  The TESS Input Catalog and Candidate Target List , 2017, The Astronomical Journal.

[48]  A. Bragaglia,et al.  The Gaia-ESO Survey: radial distribution of abundances in the Galactic disc from open clusters and young-field stars , 2017, 1703.00762.

[49]  A. Klutsch,et al.  The Gaia-ESO Survey: The present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters , 2017, 1702.03461.

[50]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: Structural and dynamical properties of the young cluster Chamaeleon i , 2017, 1701.03741.

[51]  E. Grebel,et al.  Observing the products of stellar evolution in the old open cluster M67 with APOGEE , 2017, 1701.00979.

[52]  D. O. Astronomy,et al.  The evolution of the Milky Way: New insights from open clusters , 2016, 1609.02619.

[53]  A. Bragaglia,et al.  TheGaia-ESO Survey: Probes of the inner disk abundance gradient , 2016, Astronomy &amp; Astrophysics.

[54]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: Sodium and aluminium abundances in giants and dwarfs. Implications for stellar and Galactic chemical evolution , 2016, 1602.03289.

[55]  J. Meléndez,et al.  The Hyades open cluster is chemically inhomogeneous , 2016, 1601.07354.

[56]  Jo Bovy,et al.  THE CHEMICAL HOMOGENEITY OF OPEN CLUSTERS , 2015, 1510.06745.

[57]  Liverpool John Moores University,et al.  Post first dredge-up [C/N] ratio as age indicator. Theoretical calibration , 2015, 1509.06904.

[58]  A. Korn,et al.  Gaia FGK benchmark stars: Effective temperatures and surface gravities , 2015, 1506.06095.

[59]  G. Carraro,et al.  The Gaia-ESO Survey: Insights into the inner-disc evolution from open clusters , 2015, 1505.04039.

[60]  M. Asplund,et al.  Atomic and molecular data for optical stellar spectroscopy , 2015, 1506.06697.

[61]  Timothy D. Brandt,et al.  THE AGE AND AGE SPREAD OF THE PRAESEPE AND HYADES CLUSTERS: A CONSISTENT, ∼800 Myr PICTURE FROM ROTATING STELLAR MODELS , 2015, 1504.00004.

[62]  C. Prieto,et al.  Young [α/Fe]-enhanced stars discovered by CoRoT and APOGEE: What is their origin? , 2015, 1503.06990.

[63]  G. Carraro,et al.  Testing the chemical tagging technique with open clusters , 2015, 1503.02082.

[64]  G. Gilmore,et al.  Carbon, nitrogen and α-element abundances determine the formation sequence of the Galactic thick and thin discs , 2015, 1503.00537.

[65]  U. Munari,et al.  The GALAH survey: scientific motivation , 2015, Monthly Notices of the Royal Astronomical Society.

[66]  Nicolas Buchschacher,et al.  HARPS-N @ TNG, two year harvesting data: performances and results , 2014, Astronomical Telescopes and Instrumentation.

[67]  C. Soubiran,et al.  Determining stellar atmospheric parameters and chemical abundances of FGK stars with iSpec , 2014, 1407.2608.

[68]  M. Irwin,et al.  The Gaia-ESO Survey: Stellar content and elemental abundances in the massive cluster NGC 6705 , 2014, 1407.1510.

[69]  T. Nordlander,et al.  NLTE Radiative Transfer in Cool Stars , 2014, 1403.3088.

[70]  Sergey E. Koposov,et al.  TheGaia-ESO Survey: Abundance ratios in the inner-disk open clusters Trumpler 20, NGC 4815, NGC 6705 , 2013, Astronomy &amp; Astrophysics.

[71]  José A. Gómez Hernández,et al.  Gaia FGK benchmark stars: Metallicity , 2013, 1309.1099.

[72]  N. V. Kharchenko,et al.  Global survey of star clusters in the Milky Way II. The catalogue of basic parameters , 2013, 1308.5822.

[73]  A. Vallenari,et al.  FAMA: An automatic code for stellar parameter and abundance determination , 2013, 1307.2367.

[74]  M. Tsantaki,et al.  Deriving precise parameters for cool solar-type stars Optimizing the iron line list ?;??;??? , 2013, 1304.6639.

[75]  G. Bruce Berriman,et al.  Astrophysics Source Code Library , 2012, ArXiv.

[76]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[77]  Maria Bergemann,et al.  Non‐LTE line formation of Fe in late‐type stars – I. Standard stars with 1D and 〈3D〉 model atmospheres , 2012, 1207.2455.

[78]  S. Ekstrom,et al.  Thermohaline instability and rotation-induced mixing - III. Grid of stellar models and asymptotic asteroseismic quantities from the pre-main sequence up to the AGB for low- and intermediate-mass stars of various metallicities , 2012, 1204.5193.

[79]  Anthony G. A. Brown,et al.  The Gaia-ESO Public Spectroscopic Survey , 2012 .

[80]  S. Lucatello,et al.  MOOG: LTE line analysis and spectrum synthesis , 2012 .

[81]  F. Grupp,et al.  A non-LTE study of neutral and singly-ionized iron line spectra in 1D models of the Sun and selected late-type stars ? , 2011, 1101.4570.

[82]  Liverpool John Moores University,et al.  Lithium abundance in the globular cluster M4: from the turn‐off to the red giant branch bump , 2010, 1010.3879.

[83]  C. Worley,et al.  Heavy element abundances in low gravity globular cluster stars: NGC 362 and NGC 6388★ , 2010 .

[84]  J. Loon,et al.  Heavy‐element abundances in low‐gravity globular cluster stars: 47 Tuc★ , 2010 .

[85]  A. A. Boyarchuk,et al.  A study of red giants in the fields of open clusters. Cluster members , 2009 .

[86]  F. Grundahl,et al.  Signatures of intrinsic Li depletion and Li-Na anti-correlation in the metal-poor globular cluster NGC 6397 , , 2009, 0906.2876.

[87]  Laura Magrini,et al.  The evolution of the Galactic metallicity gradient from high-resolution spectroscopy of open clusters , 2008, 0812.0854.

[88]  S. Warren,et al.  Metallicities and radial velocities of five open clusters including a new candidate member of the Monoceros stream , 2008, 0811.2925.

[89]  P. Stetson,et al.  DAOSPEC: An Automatic Code for Measuring Equivalent Widths in High-Resolution Stellar Spectra , 2008, 0811.2932.

[90]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[91]  Robert Barkhouser,et al.  The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2007, Astronomical Telescopes + Instrumentation.

[92]  D. Astronomia,et al.  Newly discovered active binaries in the RasTyc sample of stellar X-ray sources. I. Orbital and physi , 2006, astro-ph/0610591.

[93]  E. Oliva,et al.  The GIANO-TNG spectrometer , 2006, SPIE Astronomical Telescopes + Instrumentation.

[94]  A. Bragaglia,et al.  The Bologna Open Cluster Chemical Evolution Project: Midterm Results from the Photometric Sample , 2005, astro-ph/0511020.

[95]  M. Asplund,et al.  New light on stellar abundance analyses: Departures from LTE and homogeneity. , 2005 .

[96]  M. Asplund,et al.  Effects of line-blocking on the non-LTE Fe I spectral line formation , 2005, astro-ph/0507375.

[97]  R. Gratton,et al.  High-resolution spectroscopy of the old open cluster Collinder 261: abundances of iron and other elements , 2005, astro-ph/0505606.

[98]  S. Roser,et al.  Astrophysical parameters of Galactic open clusters , 2005, astro-ph/0501674.

[99]  M. Asplund,et al.  The Solar Chemical Composition , 2004, astro-ph/0410214.

[100]  A. Tadross Metallicity distribution on the galactic disk , 2003 .

[101]  E. Friel,et al.  Abundances of Red Giants in the Old Open Cluster Collinder 261 , 2003 .

[102]  P. Hauschildt,et al.  Atmospheric Models of Red Giants with Massive-Scale Non-Local Thermodynamic Equilibrium , 2003 .

[103]  P. Hauschildt,et al.  Atmospheric models of red giants with massive scale NLTE , 2003, astro-ph/0306531.

[104]  Nathan D. Miller,et al.  Metallicities of Old Open Clusters , 2002 .

[105]  M. G. Lattanzi,et al.  GAIA: Composition, formation and evolution of the Galaxy , 2001, astro-ph/0101235.

[106]  R. Sagar,et al.  Mass functions of five distant northern open star clusters , 1998 .

[107]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[108]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.

[109]  Antonio Delgado,et al.  The Intermediate Age Open Cluster NGC 7044 , 1993 .

[110]  F. Anders,et al.  NGC 6705 a young α -enhanced open cluster from OCCASO data (cid:63) , 2018 .

[111]  Nikolai Piskunov,et al.  Modelling of Stellar Atmospheres , 2003 .

[112]  F. Castelli,et al.  Round Table Summary: Problems in Modelling Stellar Atmospheres , 2003 .