Topological clustering of maps using a genetic algorithm

This paper presents a genetic approach to the problem of map topological clustering. Maps are symbolically represented as graphs whose vertices are landmarks in the environment. Clustering is performed according to a fitness function which takes functional requirements into account.

[1]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[2]  Lawrence Davis,et al.  Job Shop Scheduling with Genetic Algorithms , 1985, ICGA.

[3]  David H. Ackley,et al.  An empirical study of bit vector function optimization , 1987 .

[4]  David Nitzan,et al.  Development of intelligent robots: Achievements and issues , 1985, IEEE J. Robotics Autom..

[5]  Geoffrey C. Fox,et al.  A deterministic annealing approach to clustering , 1990, Pattern Recognit. Lett..

[6]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[7]  Dario Maio,et al.  Map Learning and Clustering in Autonomous Systems , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[9]  Donald R. Jones,et al.  Solving Partitioning Problems with Genetic Algorithms , 1991, International Conference on Genetic Algorithms.

[10]  Stefano Rizzi,et al.  Clustering by discovery on maps , 1992, Pattern Recognit. Lett..

[11]  L. Darrell Whitley,et al.  Scheduling Problems and Traveling Salesmen: The Genetic Edge Recombination Operator , 1989, International Conference on Genetic Algorithms.

[12]  Bidyut Baran Chaudhuri,et al.  Dynamic clustering for time incremental data , 1994, Pattern Recognit. Lett..

[13]  Lawrence Davis,et al.  Genetic Algorithms and Simulated Annealing , 1987 .

[14]  Stefano Rizzi,et al.  A hybrid approach to path planning in autonomous agents , 1994, Proceedings of International Conference on Expert Systems for Development.