Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates.

Lens effect was obtained in an open microfluidic system by using a thin layer of liquid on a polar electric crystal like LiNbO3. An array of liquid micro-lenses was generated by electrowetting effect in pyroelectric periodically poled crystals. Compared to conventional electrowetting devices, the pyroelectric effect allowed to have an electrode-less and circuit-less configuration. An interferometric technique was used to characterize the curvature of the micro-lenses and the corresponding results are presented and discussed. The preliminary results concerning the imaging capability of the micro-lens array are also reported.

[1]  Shah,et al.  Electrochemical principles for active control of liquids on submillimeter scales , 1999, Science.

[2]  A. K. Agarwal,et al.  Adaptive liquid microlenses activated by stimuli-responsive hydrogels , 2006, Nature.

[3]  Ed Colgate,et al.  An investigation of electrowetting‐based microactuation , 1990 .

[4]  Peter Malcolm Moran,et al.  Fluidic lenses with variable focal length , 2006 .

[5]  S. Cho,et al.  Low voltage electrowetting-on-dielectric , 2002 .

[6]  G. Beni,et al.  Dynamics of electrowetting displays , 1981 .

[7]  F. Laurell,et al.  Detection of ferroelectric domain reversal in KTiOPO4 waveguides , 1992 .

[8]  B. J. Feenstra,et al.  Video-speed electronic paper based on electrowetting , 2003, Nature.

[9]  M. Yamada,et al.  First‐order quasi‐phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second‐harmonic generation , 1993 .

[10]  V. Gopalan,et al.  In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy , 1999 .

[11]  K. Nassau,et al.  THE DOMAIN STRUCTURE AND ETCHING OF FERROELECTRIC LITHIUM NIOBATE , 1965 .

[12]  E.L. Wooten,et al.  A review of lithium niobate modulators for fiber-optic communications systems , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  J. Baret,et al.  Electrowetting: from basics to applications , 2005 .

[14]  Sandra M. Troian,et al.  Patterning liquid flow on the microscopic scale , 1999, Nature.

[15]  Shin‐Tson Wu,et al.  Tunable-focus liquid lens controlled using a servo motor. , 2006, Optics express.

[16]  Gil Rosenman,et al.  Wettability patterning of hydroxyapatite nanobioceramics induced by surface potential modification , 2006 .

[17]  J. Yeh,et al.  Dielectrically actuated liquid lens. , 2007, Optics express.

[18]  William K. Burns,et al.  Pyroelectric effects in LiNbO3 channel-waveguide devices , 1986 .

[19]  Mwj Menno Prins,et al.  Fluid control in multichannel structures by electrocapillary pressure. , 2001, Science.

[20]  T. Gaylord,et al.  Lithium niobate: Summary of physical properties and crystal structure , 1985 .

[21]  Pietro Ferraro,et al.  Digital Holography: Recent Advancements and Prospective Improvements for Applications in Microscopy , 2006 .

[22]  K. Neyts,et al.  Diffuse double layer charging in nonpolar liquids , 2007 .

[23]  Seth R. Marder,et al.  Local wettability modification by thermochemical nanolithography with write-read-overwrite capability , 2007 .

[24]  Pietro Ferraro What breaks the shadow of the tube , 1998 .

[25]  B. Berge,et al.  Variable focal lens controlled by an external voltage: An application of electrowetting , 2000 .

[26]  Reinhard Lipowsky,et al.  Wetting morphologies at microstructured surfaces. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  D. Psaltis,et al.  Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.

[28]  E. Bourim,et al.  Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals , 2006 .

[29]  Ashutosh Sharma,et al.  PATTERN FORMATION IN UNSTABLE THIN LIQUID FILMS , 1998 .

[30]  Jason Heikenfeld,et al.  Observation and optical implications of oil dewetting patterns in electrowetting displays , 2008 .

[31]  S. Kuiper,et al.  Variable-focus liquid lens for miniature cameras , 2004 .

[32]  Electron Emission from Ferroelectrics , 1995 .

[33]  J P Carrico,et al.  Thermally stimulated field emission from pyroelectric LiNbO3 , 1974 .

[34]  Melania Paturzo,et al.  In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy , 2008 .

[35]  Alexei A Kornyshev,et al.  Electrowetting with electrolytes. , 2006, Physical review letters.

[36]  R.L. Byer,et al.  Nonlinear optics and solid-state lasers: 2000 , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[37]  M. Vassalli,et al.  Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching , 2005 .

[38]  S. Herminghaus,et al.  Electrostatic stabilization of fluid microstructures , 2002 .

[39]  Hans Riegler,et al.  Reversible self-propelled droplet movement: a new driving mechanism. , 2005, Physical review letters.