Numerical simulation of the N-dimensional sine-Gordon equation via operational matrices
暂无分享,去创建一个
[1] A. Scott,et al. The soliton: A new concept in applied science , 1973 .
[2] L. Trefethen,et al. THE EIGENVALUES OF SECOND-ORDER SPECTRAL DIFFERENTIATION MATRICES* , 1988 .
[3] P. S. Lomdahl,et al. Numerical study of 2+1 dimensional sine-Gordon solitons , 1981 .
[4] O. Klein,et al. Quantentheorie und fünfdimensionale Relativitätstheorie , 1926 .
[5] Fernando Vadillo,et al. The solution of two-dimensional advection–diffusion equations via operational matrices , 2013 .
[6] Fernando Vadillo,et al. An integrating factor for nonlinear Dirac equations , 2010, Comput. Phys. Commun..
[7] S. Cox,et al. Exponential Time Differencing for Stiff Systems , 2002 .
[8] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[9] G. Lamb. Elements of soliton theory , 1980 .
[10] Elsayed M. E. Elbarbary,et al. Higher order pseudospectral differentiation matrices , 2005 .
[11] Alexandre T. Filippov. The Versatile Soliton , 2000 .
[12] Satish C. Reddy,et al. A MATLAB differentiation matrix suite , 2000, TOMS.
[13] Bengt Fornberg,et al. A practical guide to pseudospectral methods: Introduction , 1996 .
[14] O. Klein,et al. Quantum Theory and Five-Dimensional Theory of Relativity. (In German and English) , 1926 .
[15] W. Gordon,et al. Der Comptoneffekt nach der Schrödingerschen Theorie , 1926 .
[16] Mehdi Dehghan,et al. Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM) , 2010, Comput. Phys. Commun..
[17] David Gottlieb,et al. The Spectrum of the Chebyshev Collocation Operator for the Heat Equation , 1983 .
[18] Francisco de la Hoz,et al. A matrix-based numerical method for the simulation of the two-dimensional sine-Gordon equation, , 2012 .
[19] Richard Bellman,et al. Introduction to Matrix Analysis , 1972 .
[20] W. G. Price,et al. Numerical solutions of a damped Sine-Gordon equation in two space variables , 1995 .
[21] D. Zwillinger. Handbook of differential equations , 1990 .
[22] Richard Bellman,et al. Introduction to matrix analysis (2nd ed.) , 1997 .
[23] Lloyd N. Trefethen,et al. Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..
[24] William E. Schiesser,et al. A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab , 2009 .
[25] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[26] Anatoli V. Andreev. Atomic Spectroscopy: Introduction to the Theory of Hyperfine Structure , 2005 .
[27] D. Gottlieb,et al. Numerical analysis of spectral methods : theory and applications , 1977 .
[28] P. Drazin,et al. Solitons: An Introduction , 1989 .
[29] Mehdi Dehghan,et al. Meshless local Petrov-Galerkin (MLPG) approximation to the two dimensional sine-Gordon equation , 2010, J. Comput. Appl. Math..
[30] V. Fock,et al. Zur Schrödingerschen Wellenmechanik , 1926 .
[31] Mehdi Dehghan,et al. A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions , 2008, Math. Comput. Simul..
[32] A. G. Bratsos. An improved numerical scheme for the sine‐Gordon equation in 2+1 dimensions , 2008 .
[33] Mehdi Dehghan,et al. Boundary element solution of the two-dimensional sine-Gordon equation using continuous linear elements , 2009 .
[34] C. Loan. The ubiquitous Kronecker product , 2000 .
[35] A. G. Bratsos. The solution of the two-dimensional sine-Gordon equation using the method of lines , 2007 .
[36] Y. Pavlov,et al. Solutions of the three-dimensional sine-Gordon equation , 2009 .
[37] Mark J. Ablowitz,et al. Solitons and the Inverse Scattering Transform , 1981 .
[38] E. H. Twizell. Computational methods for partial differential equations , 1984 .