On the Agmon-Miranda maximum principle for solutions of strongly elliptic equations in domains of ℝn with conical points
暂无分享,去创建一个
[1] V. Maz'ya,et al. ON THE SPECTRUM OF THE OPERATOR PENCIL GENERATED BY THE DIRICHLET PROBLEM IN A CONE , 1992 .
[2] V. A. Kondrat'ev,et al. Boundary problems for elliptic equations in domains with conical or angular points , 1967 .
[3] C. Miranda. Teorema del massimo modulo e teorema di esistenza e di unicità per il problema di Dirichlet relativo alle equazioni ellittiche in due variabili , 1958 .
[4] V. Maz'ya,et al. The first boundary value problem for classical equations of mathematical physics in domains with piecewise-smooth boundaries. I (in Russian) , 1983 .
[5] V. Maz'ya,et al. Spectral properties of the operator bundles generated by elliptic boundary-value problems in a cone , 1988 .
[6] B. Schulze. Abschtzungen in Normen gleichmiger Konvergenz fr elliptische Randwert-Probleme , 1975 .
[7] G. Wildenhain,et al. Methoden der Potentialtheorie für elliptische Differentialgleichungen beliebiger Ordnung , 1977 .
[8] J. Roßmann,et al. On the Agmon-Miranda maximum principle for solutions of elliptic equations in polyhedral and polygonal domains , 1991 .
[9] V. Maz'ya,et al. ON THE SINGULARITIES OF SOLUTIONS OF THE DIRICHLET PROBLEM IN THE EXTERIOR OF A SLENDER CONE , 1985 .
[10] S. Agmon. Maximum theorems for solutions of higher order elliptic equations , 1960 .
[11] Yu. V. Pleskov,et al. Russian Text Ignored , 1962 .