Plasmon resonances for solar energy harvesting: A mechanistic outlook

Summary In the last 10 years, there has been extensive research by the nanoscience and catalysis communities on the potential use of plasmonic nanoparticles for both solar-to-electrical energy and solar-to-chemical fuel conversions. Herein, we present a critical review of the quickly expanding field of plasmon resonance-enhanced light energy harvesting. A wide range of enhancement phenomena have been observed: from enhanced light trapping in silicon solar cells loaded with plasmonic nanoparticles to plasmonically assisted hot carrier generation for photoelectrolysis, all of which are discussed in this review. We examine seminal findings, present various physical mechanisms potentially responsible for plasmonic enhancement, and also clear up some common fallacies about such enhancement phenomena. In addition, the review covers wide-open research opportunities for furthering deeper mechanistic understanding of plasmonic effects, engineering hybrid nanosystems optimized for efficient light-to-energy conversion, and translating promising effects to technologically relevant objectives. Plasmonically assisted solar energy conversion is a field rife with questions and opportunities for chemists and materials engineers alike.

[1]  Daniel C. Hannah,et al.  The role of interfacial charge transfer-type interactions in the decay of plasmon excitations in metal nanoparticles. , 2013, Physical chemistry chemical physics : PCCP.

[2]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[3]  S. Cronin,et al.  Plasmon-enhanced water splitting on TiO2-passivated GaP photocatalysts. , 2014, Physical chemistry chemical physics : PCCP.

[4]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[5]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[6]  P. Jain Plasmon-in-a-Box: On the Physical Nature of Few-Carrier Plasmon Resonances. , 2014, The journal of physical chemistry letters.

[7]  P. Jain,et al.  Ultrafast electron relaxation dynamics in coupled metal nanoparticles in aggregates. , 2006, The journal of physical chemistry. B.

[8]  Tetsu Tatsuma,et al.  Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. , 2004, Chemical communications.

[9]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[10]  Tetsu Tatsuma,et al.  Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. , 2005, Journal of the American Chemical Society.

[11]  P. Yang,et al.  Plasmon-enhanced photocatalytic activity of iron oxide on gold nanopillars. , 2012, ACS nano.

[12]  P. Jain,et al.  Plasmonics with Doped Quantum Dots , 2012 .

[13]  M. El-Sayed,et al.  Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant , 1999 .

[14]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[15]  S. Linic,et al.  Tuning Selectivity in Propylene Epoxidation by Plasmon Mediated Photo-Switching of Cu Oxidation State , 2013, Science.

[16]  H. Girault,et al.  Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles. , 2004, The Journal of chemical physics.

[17]  B. Robinson,et al.  Room-temperature electron spin dynamics in free-standing ZnO quantum dots. , 2007, Physical review letters.

[18]  G. Lanzani,et al.  Plasmon dynamics in colloidal Cu₂-xSe nanocrystals. , 2011, Nano letters.

[19]  P. Kamat Manipulation of Charge Transfer Across Semiconductor Interface. A Criterion That Cannot Be Ignored in Photocatalyst Design. , 2012, The journal of physical chemistry letters.

[20]  Paul Mulvaney,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002 .

[21]  Christoph Langhammer,et al.  Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms. , 2011, ACS nano.

[22]  A. Campion,et al.  Surface-enhanced Raman scattering , 1998 .

[23]  Igor Zorić,et al.  Nanoplasmonic Probes of Catalytic Reactions , 2009, Science.

[24]  E. Wolf,et al.  Green emission to probe photoinduced charging events in ZnO-Au nanoparticles. Charge distribution and fermi-level equilibration , 2003 .

[25]  Prashant K. Jain,et al.  On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation , 2007 .

[26]  B. Kasemo,et al.  Localized Surface Plasmons Shed Light on Nanoscale Metal Hydrides , 2010, Advanced materials.

[27]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[28]  Naomi J Halas,et al.  Nanoshell-enabled photothermal cancer therapy: impending clinical impact. , 2008, Accounts of chemical research.

[29]  R. Bachelot,et al.  Quantitative analysis of localized surface plasmons based on molecular probing. , 2010, ACS nano.

[30]  A. Mooradian,et al.  Photoluminescence of Metals , 1969 .

[31]  V. Zhdanov,et al.  Size-dependent kinetics of hydriding and dehydriding of Pd nanoparticles. , 2010, Physical Review Letters.

[32]  B. Kasemo,et al.  A combined nanoplasmonic and electrodeless quartz crystal microbalance setup. , 2009, The Review of scientific instruments.

[33]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[34]  A. Fujishima,et al.  TiO2 Photocatalysis: A Historical Overview and Future Prospects , 2005 .

[35]  Paul Mulvaney,et al.  Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. , 2008, Nature nanotechnology.

[36]  Huaiyong Zhu,et al.  Viable photocatalysts under solar-spectrum irradiation: nonplasmonic metal nanoparticles. , 2014, Angewandte Chemie.

[37]  P. Jain,et al.  Catalytic activation of a solid oxide in electronic contact with gold nanoparticles. , 2015, Angewandte Chemie.

[38]  Andrew J. Wilson,et al.  Visualizing site-specific redox potentials on the surface of plasmonic nanoparticle aggregates with superlocalization SERS microscopy. , 2014, Nano letters.

[39]  Suljo Linic,et al.  Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties. , 2013, Accounts of chemical research.

[40]  P. Nordlander,et al.  Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. , 2014, Journal of the American Chemical Society.

[41]  H. Atwater,et al.  Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors , 2009 .

[42]  Bonn,et al.  Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001) , 1999, Science.

[43]  M. Steigerwald,et al.  Plasmon Induced Photovoltage and Charge Separation in Citrate-Stabilized Gold Nanoparticles , 2010 .

[44]  M. El-Sayed,et al.  Photocatalysis in gold nanocage nanoreactors. , 2009, The journal of physical chemistry. A.

[45]  H. Freund,et al.  Photochemistry on metal nanoparticles. , 2006, Chemical reviews.

[46]  Prashant K. Jain,et al.  Determination of the Minimum Temperature Required for Selective Photothermal Destruction of Cancer Cells with the Use of Immunotargeted Gold Nanoparticles , 2006, Photochemistry and photobiology.

[47]  J. Hupp,et al.  Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[48]  K. Catchpole,et al.  Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits , 2012 .

[49]  John L. Falconer,et al.  Spillover in Heterogeneous Catalysis , 1995 .

[50]  De‐Yin Wu,et al.  Surface-Enhanced Raman Scattering: From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures , 2002 .

[51]  P. Jain,et al.  Doped nanocrystals as plasmonic probes of redox chemistry. , 2013, Angewandte Chemie.

[52]  V. Zhdanov,et al.  LSPR study of the kinetics of the liquid-solid phase transition in Sn nanoparticles. , 2010, Nano letters.

[53]  Richard P Van Duyne,et al.  Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. , 2010, Chemical Society reviews.

[54]  H. Fu,et al.  Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2. , 2005, The journal of physical chemistry. B.

[55]  A Paul Alivisatos,et al.  Localized surface plasmon resonances arising from free carriers in doped quantum dots. , 2011, Nature materials.

[56]  Peter Nordlander,et al.  Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles , 2013, Proceedings of the National Academy of Sciences.

[57]  P. Kamat,et al.  Semiconductor−Metal Nanocomposites. Photoinduced Fusion and Photocatalysis of Gold-Capped TiO2 (TiO2/Gold) Nanoparticles , 2001 .

[58]  O. Prezhdo,et al.  Instantaneous generation of charge-separated state on TiO₂ surface sensitized with plasmonic nanoparticles. , 2014, Journal of the American Chemical Society.

[59]  R. Schaller,et al.  Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. , 2012, Journal of the American Chemical Society.

[60]  Florian Libisch,et al.  Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. , 2013, Nano letters.

[61]  R. Berndt,et al.  Decay of electronic excitations at metal surfaces , 2004 .

[62]  Charles R. Sullivan,et al.  Limits of localized heating by electromagnetically excited nanoparticles , 2006 .

[63]  A. Diaspro,et al.  Plasmon bleaching dynamics in colloidal gold-iron oxide nanocrystal heterodimers. , 2012, Nano letters.

[64]  A Paul Alivisatos,et al.  Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. , 2012, Journal of the American Chemical Society.

[65]  A. Furube,et al.  Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. , 2007, Journal of the American Chemical Society.

[66]  M. El-Sayed,et al.  Plasmonic Field Effect on the Hexacyanoferrate (III)-Thiosulfate Electron Transfer Catalytic Reaction on Gold Nanoparticles: Electromagnetic or Thermal? , 2009 .

[67]  Jun‐Jie Zhu,et al.  Plasmonic Cu(2-x)S nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides. , 2009, Journal of the American Chemical Society.

[68]  Igor Zorić,et al.  Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme. , 2007, Nano letters.

[69]  M. R. Kim,et al.  Reversible tunability of the near-infrared valence band plasmon resonance in Cu(2-x)Se nanocrystals. , 2011, Journal of the American Chemical Society.

[70]  Adam D. McFarland,et al.  Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity , 2003 .

[71]  Liberato Manna,et al.  Understanding the Plasmon Resonance in Ensembles of Degenerately Doped Semiconductor Nanocrystals , 2012 .

[72]  V. Zhdanov,et al.  Specifics of substrate-mediated photo-induced chemical processes on supported nm-sized metal particles , 2004 .

[73]  Prashant K. Jain,et al.  Surface Plasmon Resonance Sensitivity of Metal Nanostructures : Physical Basis and Universal Scaling in Metal Nanoshells , 2007 .

[74]  P. Jain,et al.  Plasmons in Photocharged ZnO Nanocrystals Revealing the Nature of Charge Dynamics , 2013 .

[75]  Zongfu Yu,et al.  Nanodome solar cells with efficient light management and self-cleaning. , 2010, Nano letters.

[76]  A. Diaspro,et al.  Ultrafast carrier dynamics in gold/iron-oxide nanocrystal heterodimers , 2011 .

[77]  Suljo Linic,et al.  Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. , 2011, Nature chemistry.

[78]  L. Liz‐Marzán,et al.  Redox Catalysis Using Ag@SiO2 Colloids , 1999 .

[79]  Wei Qian,et al.  Ultrafast cooling of photoexcited electrons in gold nanoparticle-thiolated DNA conjugates involves the dissociation of the gold-thiol bond. , 2006, Journal of the American Chemical Society.

[80]  Masaru Kuno,et al.  Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. , 2007, Journal of the American Chemical Society.

[81]  Volker Deckert,et al.  Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. , 2012, Nature nanotechnology.

[82]  P. Kamat,et al.  Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells. , 2012, ACS nano.

[83]  H. Xin,et al.  Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. , 2012, Nature materials.

[84]  Juan C Scaiano,et al.  Can Surface Plasmon Fields Provide a New Way to Photosensitize Organic Photoreactions? From Designer Nanoparticles to Custom Applications. , 2013, The journal of physical chemistry letters.

[85]  P. Jain,et al.  Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities. , 2014, The journal of physical chemistry letters.

[86]  Li Cd,et al.  Photoinduced Electron Transfer at Molecule−Metal Interfaces , 2006 .

[87]  Xiaohua Huang,et al.  Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. , 2008, Accounts of chemical research.

[88]  A Paul Alivisatos,et al.  Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition. , 2013, Physical review letters.

[89]  E. Wolf,et al.  Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. , 2004, Journal of the American Chemical Society.

[90]  Niket Thakkar,et al.  Charge-tunable quantum plasmons in colloidal semiconductor nanocrystals. , 2014, ACS nano.

[91]  C. Mirkin,et al.  Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. , 2006, Nano letters.

[92]  Tianquan Lian,et al.  Plasmon-induced hot electron transfer from the Au tip to CdS rod in CdS-Au nanoheterostructures. , 2013, Nano letters.

[93]  Prathamesh Pavaskar,et al.  Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions , 2011 .

[94]  L. Brus,et al.  Photovoltage and Photocatalyzed Growth in Citrate-Stabilized Colloidal Silver Nanocrystals† , 2007 .

[95]  Plasmon enhanced solar-to-fuel energy conversion. , 2011, Nano letters.

[96]  Prashant K. Jain,et al.  Plasmonic coupling in noble metal nanostructures , 2010 .