Logics for first-order team properties

In this paper, we introduce a logic based on team semantics, called \(\mathbf {FOT}\), whose expressive power coincides with first-order logic both on the level of sentences and (open) formulas, and we also show that a sublogic of \(\mathbf {FOT}\), called \(\mathbf {FOT}^\downarrow \), captures exactly downward closed first-order team properties. We axiomatize completely the logic \(\mathbf {FOT}\), and also extend the known partial axiomatization of dependence logic to dependence logic enriched with the logical constants in \(\mathbf {FOT}^\downarrow \).

[1]  Wilfrid Hodges,et al.  Compositional Semantics for a Language of Imperfect Information , 1997, Log. J. IGPL.

[2]  Wilbur John Walkoe,et al.  Finite Partially-Ordered Quantification , 1970, J. Symb. Log..

[3]  Lauri Hella,et al.  Inclusion Logic and Fixed Point Logic , 2013, CSL.

[4]  Jouko A. Väänänen,et al.  Dependence Logic - A New Approach to Independence Friendly Logic , 2007, London Mathematical Society student texts.

[5]  Fan Yang,et al.  Propositional logics of dependence , 2014, Ann. Pure Appl. Log..

[6]  Miika Hannula,et al.  Axiomatizing first-order consequences in independence logic , 2013, Ann. Pure Appl. Log..

[7]  P. Galliani,et al.  The Dynamics of Imperfect Information , 2012 .

[8]  Pietro Galliani,et al.  Hierarchies in independence logic , 2013, CSL.

[9]  Jarmo Kontinen Coherence and Computational Complexity of Quantifier-free Dependence Logic Formulas , 2013, Stud Logica.

[10]  Fan Yang,et al.  Dependence and Independence in Social Choice: Arrow's Theorem , 2016, Dependence Logic.

[11]  Juha Kontinen,et al.  Dependence logic with generalized quantifiers: Axiomatizations , 2017, J. Comput. Syst. Sci..

[12]  Pietro Galliani,et al.  Inclusion and exclusion dependencies in team semantics - On some logics of imperfect information , 2011, Ann. Pure Appl. Log..

[13]  Fan Yang,et al.  Questions and dependency in intuitionistic logic , 2017, Notre Dame J. Formal Log..

[14]  Juha Kontinen On Natural Deduction in Dependence Logic , 2015, Logic Without Borders.

[15]  Juha Kontinen,et al.  On Definability in Dependence Logic , 2009, J. Log. Lang. Inf..

[16]  H. Enderton Finite Partially-Ordered Quantifiers , 1970 .

[17]  Ronald Fagin,et al.  Inclusion Dependencies and Their Interaction with Functional Dependencies , 1984, J. Comput. Syst. Sci..

[18]  Fan Yang Negation and partial axiomatizations of dependence and independence logic revisited , 2019, Ann. Pure Appl. Log..

[19]  Ivano Ciardelli,et al.  Dependency as Question Entailment , 2016, Dependence Logic.

[20]  Pietro Galliani Epistemic Operators in Dependence Logic , 2013, Stud Logica.

[21]  Miika Hannula,et al.  A finite axiomatization of conditional independence and inclusion dependencies , 2016, Inf. Comput..

[22]  K. Arrow A Difficulty in the Concept of Social Welfare , 1950, Journal of Political Economy.

[23]  Jonni Virtema,et al.  Facets of Distribution Identities in Probabilistic Team Semantics , 2019, JELIA.

[24]  Jouko Väänänen,et al.  From IF to BI , 2009, Synthese.

[25]  Martin Lück,et al.  Axiomatizations of Team Logics , 2016, Ann. Pure Appl. Log..

[26]  Jukka Corander,et al.  A Logical Approach to Context-Specific Independence , 2016, WoLLIC.

[27]  R. Lyndon An interpolation theorem in the predicate calculus. , 1959 .

[28]  Pietro Galliani On Strongly First-Order Dependencies , 2016, Dependence Logic.

[29]  Juha Kontinen,et al.  Axiomatizing first order consequences in dependence logic , 2012, Ann. Pure Appl. Log..

[30]  Wilfried Hodges,et al.  Some Strange Quantifiers , 1997, Structures in Logic and Computer Science.

[31]  Gianluca Paolini,et al.  QUANTUM TEAM LOGIC AND BELL’S INEQUALITIES , 2014, The Review of Symbolic Logic.

[32]  Erich Grädel,et al.  Dependence and Independence , 2012, Stud Logica.