The advances of Co3O4 as gas sensing materials: A review

Abstract As a p-type semiconductive material, Co 3 O 4 has been widely studied as gas sensor materials, in addition to energy storage, catalyst and magnetic semiconductor. The gas sensors prepared using Co 3 O 4 and its composites were reviewed in this work. Investigation has indicated that the gas sensing performances of Co 3 O 4 micro-/nanostructures are strongly related to the surface area, porous nature and morphologies. Thus, the gas sensing properties of Co 3 O 4 micro-/nanostructures will change with the tuned configurations. Hierarchically porous structures of Co 3 O 4 usually exhibit a high response and low operating temperature to detect gases. In this review, attention is also focused on Co 3 O 4 -based composites, including Co 3 O 4 /inorganic metal oxides, Co 3 O 4 /carbon nanomaterials, Co 3 O 4 /polymers and Co 3 O 4 /noble metals, due to their unique effects on the final gas sensing application. The Co 3 O 4 composites generally show higher gas response than single component due to the catalytic action or synergetic effects between the components. This paper has summarized an overview of the literature on gas sensing of Co 3 O 4 and suggested potential directions for future progress.

[1]  Min Fu,et al.  Preparation of hollow Co3O4 microspheres and their ethanol sensing properties. , 2012, Inorganic chemistry.

[2]  G. Sberveglieri,et al.  Co3O4/ZnO nanocomposites: from plasma synthesis to gas sensing applications. , 2012, ACS applied materials & interfaces.

[3]  Thorsten Wagner,et al.  Nanostructured Co3O4 as a CO gas sensor: Temperature-dependent behavior , 2015 .

[4]  A. Ahmadpour,et al.  Synthesis and characterization of Cu doped cobalt oxide nanocrystals as methane gas sensors , 2011 .

[5]  Lili Wang,et al.  Fast response/recovery performance of comb-like Co3O4 nanostructure , 2014 .

[6]  Xindong Zhang,et al.  Hydrothermal synthesis and enhanced xylene-sensing properties of pompon-like Cr-doped Co3O4 hierarchical nanostructures , 2016 .

[7]  Prabhakar Rai,et al.  Cr-doped Co3O4 nanorods as chemiresistor for ultraselective monitoring of methyl benzene , 2014 .

[8]  Bingqiang Cao,et al.  Microwave hydrothermal synthesis of nanoporous cobalt oxides and their gas sensing properties , 2011 .

[9]  Kai Sun,et al.  High precision NH3 sensing using network nano-sheet Co3O4 arrays based sensor at room temperature , 2016 .

[10]  F. Liu,et al.  C2H2 gas sensor based on Ni-doped ZnO electrospun nanofibers , 2013 .

[11]  Zhijie Shi,et al.  High gas-sensor and supercapacitor performance of porous Co3O4 ultrathin nanosheets , 2015 .

[12]  S. G. Chatterjee,et al.  Graphene–metal oxide nanohybrids for toxic gas sensor: A review , 2015 .

[13]  Li-ping Zhu,et al.  Mesoporous Co3O4 nanoneedle arrays for high-performance gas sensor , 2014 .

[14]  Hyuck Jung,et al.  Nanocomposite of cobalt oxide nanocrystals and single-walled carbon nanotubes for a gas sensor application , 2010 .

[15]  Zhaoxiong Xie,et al.  MOF-templated synthesis of porous Co(3)O(4) concave nanocubes with high specific surface area and their gas sensing properties. , 2014, ACS applied materials & interfaces.

[16]  Feng Liu,et al.  Fabrication and gas sensing properties of hollow core–shell SnO2/α-Fe2O3 heterogeneous structures , 2014 .

[17]  Xiansong Liu,et al.  Hierarchical Radial Co3O4 Microcrystal and Application in Gas Sensor , 2014 .

[18]  Yuxiang Qin,et al.  High sensitivity NO2 sensor based on CuO/p-porous silicon heterojunction at room temperature , 2016 .

[19]  Xiaoping Shen,et al.  Concave Co3O4 octahedral mesocrystal: polymer-mediated synthesis and sensing properties , 2012 .

[20]  S. Bhoraskar,et al.  Humidity sensing and electrical properties of polyaniline/cobalt oxide composites , 2007 .

[21]  Vijayanand Subramanian,et al.  Highly sensitive and fast responding CO sensor based on Co3O4 nanorods. , 2010, Talanta.

[22]  V. Dravid,et al.  Porous cobalt oxides with tunable hierarchical morphologies for supercapacitor electrodes , 2012 .

[23]  Soo-Hyun Kim,et al.  Oxidizing gas sensing properties of the n-ZnO/p-Co3O4 composite nanoparticle network sensor , 2016 .

[24]  Tong Zhang,et al.  Ordered mesoporous Co3O4 for high-performance toluene sensing , 2014 .

[25]  Chao Sun,et al.  Synthesis of nearly monodisperse Co3O4 nanocubes via a microwave-assisted solvothermal process and their gas sensing properties , 2011 .

[26]  Liang Li,et al.  Controlled Cobalt Oxide from Two-Dimensional Films to One-Dimensional Nanorods and Zero-Dimensional Nanoparticles: Morphology-Dependent Optical Carbon Monoxide Gas-Sensing Properties , 2009 .

[27]  G. Shi,et al.  Graphene-based gas sensors , 2013 .

[28]  J. Tu,et al.  Superior ethanol-sensing behavior based on SnO2 mesocrystals incorporating orthorhombic and tetragonal phases , 2015 .

[29]  I. Eisele,et al.  Cobalt oxide based gas sensors on silicon substrate for operation at low temperatures , 2003 .

[30]  Xiaoping Shen,et al.  Co3O4/ZnO nanocomposites for gas-sensing applications , 2013 .

[31]  Kengo Shimanoe,et al.  Sensing properties of Au-loaded SnO2–Co3O4 composites to CO and H2 , 2005 .

[32]  J. Cheng,et al.  Effect of calcination temperature on the porous structure of cobalt oxide micro-flowers , 2012 .

[33]  Changhui Zhao,et al.  Synthesis of porous Co3O4 nanonetworks to detect toluene at low concentration. , 2014, Physical chemistry chemical physics : PCCP.

[34]  R. P. Gupta,et al.  Oxide Materials for Development of Integrated Gas Sensors—A Comprehensive Review , 2004 .

[35]  Rui Zhang,et al.  Enhanced sensing performance of the Co3O4 hierarchical nanorods to NH3 gas , 2015 .

[36]  H. Fu,et al.  Design and construction of Co3O4/PEI–CNTs composite exhibiting fast responding CO sensor at room temperature , 2013 .

[37]  J. H. Lee,et al.  Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview , 2014 .

[38]  H. Che,et al.  Solvothermal synthesis of hierarchical Co3O4 flower-like microspheres for superior ethanol gas sensing properties , 2014, Journal of Materials Science: Materials in Electronics.

[39]  Xiaoping Shen,et al.  Solvothermal synthesis and gas-sensing performance of Co3O4 hollow nanospheres , 2009 .

[40]  Ziyu Wu,et al.  Porous cobalt oxide nanowires: Notable improved gas sensing performances , 2012 .

[41]  Nagih M. Shaalan,et al.  Promising methane gas sensor synthesized by microwave-assisted Co3O4 nanoparticles , 2016 .

[42]  H. Che,et al.  TWO-DIMENSIONAL NANOSHEETS-ASSEMBLED FLOWER-LIKE Co3O4 MICROSPHERES AND THEIR GAS SENSING PERFORMANCES , 2014 .

[43]  K. Wan,et al.  Mechanical characterization of suspended strips of meshed single-walled carbon nanotubes , 2016 .

[44]  Xian-Jin Yang,et al.  3D microporous Co3O4-carbon hybrids biotemplated from butterfly wings as high performance VOCs gas sensor , 2016 .

[45]  Kan Kan,et al.  Templated synthesis of 3D hierarchical porous Co3O4 materials and their NH3 sensor at room temperature , 2016 .

[46]  Ashutosh Kumar Singh,et al.  Chemiresistive gas sensing properties of nanocrystalline Co3O4 thin films , 2013 .

[47]  Jun Wang,et al.  Facile synthesis of mesoporous ZnO/Co3O4 microspheres with enhanced gas-sensing for ethanol , 2015 .

[48]  Zheng Lou,et al.  Nanoparticles-assembled Co3O4 nanorods p-type nanomaterials: One-pot synthesis and toluene-sensing properties , 2014 .

[49]  N. Chopra,et al.  Progress in Large-Scale Production of Graphene. Part 1: Chemical Methods , 2015 .

[50]  Jong‐Heun Lee,et al.  Co3O4-SnO2 Hollow Heteronanostructures: Facile Control of Gas Selectivity by Compositional Tuning of Sensing Materials via Galvanic Replacement. , 2016, ACS applied materials & interfaces.

[51]  Lei Xu,et al.  Co3O4 Nanomaterials in Lithium‐Ion Batteries and Gas Sensors , 2005 .

[52]  Jinmo Kim,et al.  A Hollow Assembly and Its Three-Dimensional Network Formation of Single-Crystalline Co3O4 Nanoparticles for Ultrasensitive Formaldehyde Gas Sensors , 2014 .

[53]  Li-ping Zhu,et al.  A facile fluorine-mediated hydrothermal route to controlled synthesis of rhombus-shaped Co3O4 nanorod arrays and their application in gas sensing , 2013 .

[54]  Alessandro Martucci,et al.  Gas sensing properties of nanocrystalline NiO and Co3O4 in porous silica sol–gel films , 2005 .

[55]  P. Shen,et al.  Controllable synthesis of Co3O4/polyethyleneimine-carbon nanotubes nanocomposites for CO and NH3 gas sensing at room temperature , 2015 .

[56]  Shengzhong Liu,et al.  Heterojunction CuO@ZnO microcubes for superior p-type gas sensor application , 2016 .

[57]  D. Meng,et al.  Flower-like NiO hierarchical microspheres self-assembled with nanosheets: Surfactant-free solvothermal synthesis and their gas sensing properties , 2015 .

[58]  Yongying Yang,et al.  NiAl-layered Double Hydroxide/Reduced Graphene Oxide Composite: Microwave-assisted Synthesis and Supercapacitive Properties , 2014 .

[59]  J. Cheng,et al.  Enhanced performance of nickel–aluminum layered double hydroxide nanosheets/carbon nanotubes composite for supercapacitor and asymmetric capacitor , 2015 .

[60]  Weiguo Song,et al.  Fabrication of porous Co3O4 nanowires with high CO sensing performance at a low operating temperature. , 2014, Chemical communications.

[61]  Sunghoon Park,et al.  Hydrogen gas sensing of Co3O4-Decorated WO3 nanowires , 2016, Metals and Materials International.

[62]  G. Sberveglieri,et al.  Plasma enhanced-CVD of undoped and fluorine-doped Co3O4 nanosystems for novel gas sensors , 2011 .

[63]  L. Wan,et al.  Hierarchically structured cobalt oxide (Co3O4): the morphology control and its potential in sensors. , 2006, The journal of physical chemistry. B.

[64]  Kengo Shimanoe,et al.  Sensing properties of SnO2–Co3O4 composites to CO and H2 , 2004 .

[65]  S. Fardindoost,et al.  Sensitive and selective room temperature H2S gas sensor based on Au sensitized vertical ZnO nanorods with flower-like structures , 2015 .

[66]  Jing Wang,et al.  Reduced graphene oxide (rGO) encapsulated Co3O4 composite nanofibers for highly selective ammonia sensors , 2016 .

[67]  K. Ramachandran,et al.  Undoped and Mn-doped Co3O4 nanorods for ethanol sensing , 2015, Journal of Materials Science: Materials in Electronics.

[68]  N. Chopra,et al.  Structural evolution of cobalt oxide–tungsten oxide nanowire heterostructures for photocatalysis , 2015 .

[69]  Ying Wang,et al.  Template-free synthesis of Cu2O–Co3O4 core–shell composites and their application in gas sensing , 2014 .

[70]  P. Shen,et al.  Heterostructured Co3O4/PEI–CNTs composite: fabrication, characterization and CO gas sensors at room temperature , 2014 .

[71]  Qianqian Jia,et al.  A nanoscale Co3O4–WO3 p–n junction sensor with enhanced acetone responsivity , 2015, Journal of Materials Science: Materials in Electronics.

[72]  Chan Woong Na,et al.  Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor. , 2011, Chemical communications.

[73]  Li Zhang,et al.  Transition metal oxide and graphene nanocomposites for high-performance electrochemical capacitors. , 2012, Physical chemistry chemical physics : PCCP.

[74]  Abhishek Motayed,et al.  UV-assisted room-temperature chemiresistive NO2 sensor based on TiO2 thin film. , 2015, Journal of alloys and compounds.

[75]  Chueh-Yang Liu,et al.  Tunable interconnectivity of mesostructured cobalt oxide materials for sensing applications , 2009 .

[76]  Tom Regier,et al.  Co₃O₄ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. , 2011, Nature materials.

[77]  Ji-Wook Yoon,et al.  Gas sensing characteristics of p-type Cr2O3 and Co3O4 nanofibers depending on inter-particle connectivity , 2014 .

[78]  Xiao-Chun Chi,et al.  Comparison of ethanol sensitivity based on cobalt–indium combined oxide nanotubes and nanofibers , 2014 .

[79]  C. Yeh,et al.  Promotive effect of CNT on Co3O4–SnO2 in a semiconductor-type CO sensor working at room temperature , 2008 .

[80]  Rui Wang,et al.  Core–shell Co3O4/α-Fe2O3 heterostructure nanofibers with enhanced gas sensing properties , 2015 .

[81]  X. B. Zhang,et al.  A facile method to fabricate porous Co{sub 3}O{sub 4} hierarchical microspheres , 2011 .

[82]  Jun Wang,et al.  The synthesis of porous Co3O4 micro cuboid structures by solvothermal approach and investigation of its gas sensing properties and catalytic activity , 2013 .

[83]  Jipeng Cheng,et al.  Nickel-doped tin oxide hollow nanofibers prepared by electrospinning for acetone sensing , 2014 .

[84]  N. Koshizaki,et al.  Optical Gas Sensing Properties of Silica Film Doped with Cobalt Oxide Nanocrystals , 2004 .

[85]  Huiming Ji,et al.  Enhanced acetone sensing properties of Co3O4 nanosheets with highly exposed (111) planes , 2016, Journal of Materials Science: Materials in Electronics.

[86]  Won‐Hee Ryu,et al.  Bi-functional co-sensitization of graphene oxide sheets and Ir nanoparticles on p-type Co3O4 nanofibers for selective acetone detection. , 2014, Journal of materials chemistry. B.

[87]  Zheng Lou,et al.  Cross-linked p-type Co3O4 octahedral nanoparticles in 1D n-type TiO2 nanofibers for high-performance sensing devices , 2014 .

[88]  J. Cheng,et al.  Influences of anion exchange and phase transformation on the supercapacitive properties of α-Co(OH)2 , 2014 .

[89]  Zheng Lou,et al.  Hybrid Co3O4/SnO2 Core-Shell Nanospheres as Real-Time Rapid-Response Sensors for Ammonia Gas. , 2016, ACS applied materials & interfaces.

[90]  Jong‐Heun Lee,et al.  Pure and palladium-loaded Co3O4 hollow hierarchical nanostructures with giant and ultraselective chemiresistivity to xylene and toluene. , 2015, Chemistry.

[91]  Kazuo Sato,et al.  Sensing Properties of Pd-Loaded Co3O4 Film for a ppb-Level NO Gas Sensor , 2015, Sensors.

[92]  Junming Xu,et al.  Shape-regulated synthesis of cobalt oxide and its gas-sensing property , 2015 .

[93]  Liping Zhu,et al.  Gas sensors based on ultrathin porous Co3O4 nanosheets to detect acetone at low temperature , 2015 .

[94]  Peng Sun,et al.  Three-dimensional flake-flower Co/Sn oxide composite and its excellent ethanol sensing properties , 2016 .

[95]  S. El‐Safty,et al.  Meso- and Macroporous Co3O4 Nanorods for Effective VOC Gas Sensors , 2011 .

[96]  Wei Chen,et al.  Freestanding 3D mesoporous Co₃O₄@carbon foam nanostructures for ethanol gas sensing. , 2014, Analytical chemistry.

[97]  Dianqing Li,et al.  SnO2@Co3O4 p–n heterostructures fabricated by electrospinning and mechanism analysis enhanced acetone sensing , 2014 .

[98]  H. Che,et al.  Facile Synthesis of 3D Hierarchical Dandelion-like Co3O4 Microspheres for Superior Ethanol Gas Sensing Properties , 2014 .

[99]  J. H. Lee,et al.  Design of a highly sensitive and selective C2H5OH sensor using p-type Co3O4 nanofibers , 2012 .

[100]  Yi Lv,et al.  Novel Mn3O4 Micro-octahedra: Promising Cataluminescence Sensing Material for Acetone , 2009 .

[101]  G. Lu,et al.  Different Co3O4 mesostructures synthesised by templating with KIT-6 and SBA-15 via nanocasting route and their sensitivities toward ethanol , 2016 .

[102]  Jing Wang,et al.  Enhanced room temperature sensing of Co3O4-intercalated reduced graphene oxide based gas sensors , 2013 .

[103]  S. Kanzaki,et al.  Thermoelectric CO Gas Sensor Using Thin-Film Catalyst of Au and Co3 O 4 , 2004 .

[104]  J. Yang,et al.  Hierarchically porous Co3O4 film with mesoporous walls prepared via liquid crystalline template for supercapacitor application , 2011 .

[105]  Toshio Itoh,et al.  NO and NO2 Sensing Properties of WO3 and Co3O4 Based Gas Sensors , 2013, Sensors.

[106]  Xinxin Xing,et al.  Meso- and macroporous coral-like Co3O4 for VOCs gas sensor , 2015 .

[107]  N. Vuong,et al.  Co3O4–SWCNT composites for H2S gas sensor application , 2016 .

[108]  J. Tu,et al.  Correlation between Microstructure and Electrochemical Behavior of the Mesoporous Co3O4 Sheet and Its Ionothermal Synthesized Hydrotalcite-like α-Co(OH)2 Precursor , 2014 .

[109]  Derek R. Miller,et al.  Nanoscale metal oxide-based heterojunctions for gas sensing: A review , 2014 .

[110]  Chao Liu,et al.  Synthesis of TiO2 decorated Co3O4 acicular nanowire arrays and their application as an ethanol sensor , 2015 .

[111]  Jae-Hun Kim,et al.  Remarkable improvement of gas-sensing abilities in p-type oxide nanowires by local modification of the hole-accumulation layer. , 2015, ACS applied materials & interfaces.

[112]  E. Fortunato,et al.  Sol–gel cobalt oxide–silica nanocomposite thin films for gas sensing applications , 2008 .

[113]  L. Oleksenko,et al.  Nanosized Semiconductor CoxOy/SnO2 Materials for Carbon Monoxide Sensors , 2013, Theoretical and Experimental Chemistry.

[114]  X. Liu,et al.  A highly sensitive VOC gas sensor using p-type mesoporous Co3O4 nanosheets prepared by a facile chemical coprecipitation method , 2016 .

[115]  Huijuan Zhang,et al.  Designed synthesis of cobalt-oxide-based nanomaterials for superior electrochemical energy storage devices , 2015, Nano Research.

[116]  C. Zhi,et al.  Cobalt(II,III) oxide hollow structures: fabrication, properties and applications , 2012 .

[117]  S. Ruan,et al.  Hierarchical Fe3O4@Co3O4 core-shell microspheres: Preparation and acetone sensing properties , 2014 .

[118]  J. Goodenough,et al.  Facile synthesis of monodisperse porous Co3O4 microspheres with superior ethanol sensing properties. , 2011, Chemical communications.

[119]  Hui Zhang,et al.  Facile synthesis of Cr-decorated hexagonal Co3O4 nanosheets for ultrasensitive ethanol detection , 2015, Nanotechnology.

[120]  Wei Li,et al.  Preparation and Xylene‐Sensing Properties of Co3O4 Nanofibers , 2014 .

[121]  B. Xiao,et al.  Co3O4 hollow nanotubes: Facile synthesis and gas sensing properties , 2014 .

[122]  J. H. Lee,et al.  C2H5OH sensing characteristics of various Co3O4 nanostructures prepared by solvothermal reaction , 2010 .

[123]  D. Jung,et al.  Room-temperature gas sensor using carbon nanotube with cobalt oxides , 2014 .

[124]  Shengzhong Liu,et al.  Superior sensor performance from Ag@WO3 core–shell nanostructure , 2015 .

[125]  Chueh-Yang Liu,et al.  Fabrication of Mesostructured Cobalt Oxide Sensor and Its Application for CO Detector , 2009 .

[126]  Dong Xiang,et al.  Metal Oxide Gas Sensors: Sensitivity and Influencing Factors , 2010, Sensors.

[127]  W. Shin,et al.  CO sensing properties of Au/SnO2–Co3O4 catalysts on a micro thermoelectric gas sensor , 2016 .

[128]  Dianqing Li,et al.  Mechanism of enhancing the formaldehyde sensing properties of Co3O4 via Ag modification , 2015 .

[129]  Thorsten Wagner,et al.  Mesoporous materials as gas sensors. , 2013, Chemical Society reviews.