A summary based language retrieval method

The performance of language retrieval method is largely determined by the accuracy of document language model. Motivated by the hypothesis that query-biased summary presents the information that is most relevant to a query, we propose a summary-biased approach to study the use of internal structures for the estimationod document language model. This method can be viewed as a two-stage language model, in the first stage, the document language model is smoothed by the query-biased summary, and in the second stage, the smoothed document language model is further smoothed by the collection language model. Moreover, our method can be used in feedback technique to estimate an improved query model

[1]  James P. Callan,et al.  Passage-level evidence in document retrieval , 1994, SIGIR '94.

[2]  John D. Lafferty,et al.  Two-stage language models for information retrieval , 2002, SIGIR '02.

[3]  Wei-Ying Ma,et al.  A Study for Document Summarization Based on Personal Annotation , 2003, HLT-NAACL 2003.

[4]  W. Bruce Croft,et al.  Passage retrieval based on language models , 2002, CIKM.

[5]  Gerard Salton,et al.  Automatic text structuring and retrieval-experiments in automatic encyclopedia searching , 1991, SIGIR '91.

[6]  Gareth J. F. Jones,et al.  Applying summarization techniques for term selection in relevance feedback , 2001, SIGIR '01.

[7]  John D. Lafferty,et al.  A study of smoothing methods for language models applied to Ad Hoc information retrieval , 2001, SIGIR '01.

[8]  W. Bruce Croft,et al.  Cluster-based retrieval using language models , 2004, SIGIR '04.

[9]  Jade Goldstein-Stewart,et al.  Summarizing text documents: sentence selection and evaluation metrics , 1999, SIGIR '99.

[10]  Jianfeng Gao,et al.  Dependence language model for information retrieval , 2004, SIGIR '04.

[11]  ChengXiang Zhai,et al.  Term feedback for information retrieval with language models , 2007, SIGIR.

[12]  Dragomir R. Radev,et al.  Generating summaries of multiple news articles , 1995, SIGIR '95.

[13]  Hans Peter Luhn,et al.  The Automatic Creation of Literature Abstracts , 1958, IBM J. Res. Dev..

[14]  John D. Lafferty,et al.  Model-based feedback in the language modeling approach to information retrieval , 2001, CIKM '01.

[15]  Djoerd Hiemstra,et al.  Term-specific smoothing for the language modeling approach to information retrieval: the importance of a query term , 2002, SIGIR '02.

[16]  W. Bruce Croft,et al.  Passage retrieval based on language models , 2002, CIKM '02.

[17]  Tao Tao,et al.  Language Model Information Retrieval with Document Expansion , 2006, NAACL.

[18]  Jian-Yun Nie,et al.  An inferential approach to Information Retrieval and its implementation using a manual thesaurus , 1996, Artificial Intelligence Review.

[19]  Mark Sanderson,et al.  Advantages of query biased summaries in information retrieval , 1998, SIGIR '98.

[20]  Changhu Wang,et al.  Learning query-biased web page summarization , 2007, CIKM '07.

[21]  H. P. Edmundson,et al.  New Methods in Automatic Extracting , 1969, JACM.

[22]  John D. Lafferty,et al.  Information Retrieval as Statistical Translation , 2017 .

[23]  Inderjeet Mani,et al.  Machine Learning of Generic and User-Focused Summarization , 1998, AAAI/IAAI.

[24]  Justin Zobel,et al.  Passage retrieval revisited , 1997, SIGIR '97.

[25]  Jian-Yun Nie,et al.  Query expansion using term relationships in language models for information retrieval , 2005, CIKM '05.

[26]  Jin Wang,et al.  Summarization-based Query Expansion in Information Retrieval , 1998, COLING-ACL.

[27]  W. Bruce Croft,et al.  A language modeling approach to information retrieval , 1998, SIGIR '98.

[28]  Peter Poller,et al.  Extrinsic summarization evaluation: A decision audit task , 2008, TSLP.

[29]  Ryen W. White,et al.  A task-oriented study on the influencing effects of query-biased summarisation in web searching , 2003, Inf. Process. Manag..

[30]  Rong Jin,et al.  Title language model for information retrieval , 2002, SIGIR '02.