Sintering and biocompatibility of copper-doped hydroxyapatite bioceramics

[1]  M. Jansen,et al.  Solid state solubility of copper oxides in hydroxyapatite , 2018, Journal of Solid State Chemistry.

[2]  C. Felser,et al.  Slow Spin Relaxation in Dioxocobaltate(II) Anions Embedded in the Lattice of Calcium Hydroxyapatite. , 2017, Inorganic chemistry.

[3]  J. Ratnayake,et al.  Substituted hydroxyapatites for bone regeneration: A review of current trends. , 2017, Journal of biomedical materials research. Part B, Applied biomaterials.

[4]  A. Boccaccini,et al.  Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration , 2017, Biomedical materials.

[5]  Sumio Kato,et al.  Reversible Incorporation/Deposition Behavior of Cu on Hydroxyapatites by Heat Treatment at Elevated Temperatures , 2015 .

[6]  Sumathi Shanmugam,et al.  Copper substituted hydroxyapatite and fluorapatite: Synthesis, characterization and antimicrobial properties , 2014 .

[7]  M. Wei,et al.  Synthesis and characterization of cobalt-substituted hydroxyapatite powders , 2014 .

[8]  L. Bērziņa-Cimdiņa,et al.  Characterization of Mg-substituted hydroxyapatite synthesized by wet chemical method , 2014 .

[9]  A. Bandyopadhyay,et al.  Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. , 2013, Trends in biotechnology.

[10]  J. Skakle,et al.  Preparation of Copper-Doped Hydroxyapatite with Varying x in the Composition Ca10(PO4)6CuxOyHz , 2013 .

[11]  M. Gelinsky,et al.  Chemical characterization of hydroxyapatite obtained by wet chemistry in the presence of V, Co, and Cu ions. , 2013, Materials science & engineering. C, Materials for biological applications.

[12]  C. Choong,et al.  Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties , 2013, Journal of Materials Science: Materials in Medicine.

[13]  Dietmar W. Hutmacher,et al.  A Tissue Engineering Solution for Segmental Defect Regeneration in Load-Bearing Long Bones , 2012, Science Translational Medicine.

[14]  M. Klementová,et al.  Synthesis and characterization of single crystals of the layered copper hydroxide acetate Cu2(OH)3(CH3COO)·H2O , 2011 .

[15]  C. Ooi,et al.  Antibacterial efficacy and cytotoxicity studies of copper (II) and titanium (IV) substituted hydroxyapatite nanoparticles , 2010 .

[16]  M. Mitrić,et al.  Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders , 2010 .

[17]  Y. Leng,et al.  Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. , 2010, Acta biomaterialia.

[18]  L. Karanović,et al.  Crystal structure of cobalt-substituted calcium hydroxyapatite nanopowders prepared by hydrothermal processing , 2010 .

[19]  C. Doillon,et al.  The stimulation of angiogenesis and collagen deposition by copper. , 2010, Biomaterials.

[20]  T. White,et al.  The crystal chemistry of the alkaline-earth apatites A(10)(PO(4))(6)Cu(x)O(y)(H)(z) (A = Ca, Sr and Ba). , 2009, Dalton transactions.

[21]  M. Jansen,et al.  Synthesis and Properties of Colored Copper-Containing Apatites of Composition Ca5(PO4)3CuyOy + δ(OH)0.5 − y − δX0.5 (X = OH, F, Cl) , 2008 .

[22]  J A Planell,et al.  Calcium phosphate cements as bone drug delivery systems: a review. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[23]  D. Kaplan,et al.  Porosity of 3D biomaterial scaffolds and osteogenesis. , 2005, Biomaterials.

[24]  J. Knowles,et al.  Characterisation of antibacterial copper releasing degradable phosphate glass fibres. , 2005, Biomaterials.

[25]  T. Fang,et al.  Mechanism for Developing the Boundary Barrier Layers of CaCu3Ti4O12 , 2005 .

[26]  A. Sleight,et al.  Clues to the Giant Dielectric Constant of CaCu3Ti4O12 in the Defect Structure of “SrCu3Ti4O12” , 2004 .

[27]  K. Byrappa,et al.  Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method. , 2004, Biomaterials.

[28]  K. Tew,et al.  Trace elements in human physiology and pathology: zinc and metallothioneins. , 2003, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[29]  D. Townsend,et al.  Trace elements in human physiology and pathology. Copper. , 2003, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[30]  D. Ming,et al.  Mineralogical and chemical characterization of iron-, manganese-, and copper-containing synthetic hydroxyapatites. , 2003, Soil Science Society of America journal. Soil Science Society of America.

[31]  M. Jansen,et al.  Synthesis, crystal structure and properties of calcium and barium hydroxyapatites containing copper ions in hexagonal channels , 2003 .

[32]  C. Chow,et al.  Copper toxicity, oxidative stress, and antioxidant nutrients. , 2003, Toxicology.

[33]  Cédric Hubert,et al.  Study of the morphology of copper hydroxynitrate nanoplatelets obtained by controlled double jet precipitation and urea hydrolysis , 2003 .

[34]  M. Jansen,et al.  Crystal Structure and Properties of Strontium Phosphate Apatite with Oxocuprate Ions in Hexagonal Channels , 2003 .

[35]  D. Bernache-Assollant,et al.  Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. , 2002, Biomaterials.

[36]  R. Legeros,et al.  Properties of osteoconductive biomaterials: calcium phosphates. , 2002, Clinical orthopaedics and related research.

[37]  M. Mikołajczyk,et al.  FTIR study of copper patinas in the urban atmosphere , 2001 .

[38]  A. Meunier,et al.  Tissue-engineered bone regeneration , 2000, Nature Biotechnology.

[39]  F. Lin,et al.  Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. , 1999, Biomaterials.

[40]  Larry L. Hench,et al.  Bioceramics: From Concept to Clinic , 1991 .

[41]  H. Martínez,et al.  Cu-doping of calcium phosphate bioceramics: From mechanism to the control of cytotoxicity. , 2018, Acta biomaterialia.

[42]  A. Aissa,et al.  Synthesis, characterization and catalytic properties of copper-substituted hydroxyapatite nanocrystals , 2018 .

[43]  E. Champion,et al.  Ceramic devices for bone regeneration: Mechanical and clinical issues and new perspectives , 2017 .

[44]  Lei Chen,et al.  Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. , 2013, Biomaterials.

[45]  S. Larner,et al.  Concurrent mRNA and protein extraction from the same experimental sample using a commercially available column-based RNA preparation kit. , 2006, BioTechniques.

[46]  J. F. Osborn,et al.  Hydroxyapatite ceramic as a bone substitute , 2004, International Orthopaedics.

[47]  K A Gross,et al.  Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. , 2001, Journal of biomedical materials research.

[48]  G. Daculsi,et al.  Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials. , 1997, International review of cytology.

[49]  I. Rehman,et al.  Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy , 1997, Journal of materials science. Materials in medicine.