Dissolution and recrystallization of perovskite induced by N-methyl-2-pyrrolidone in a closed steam annealing method

[1]  J. Wei,et al.  Fabrication of Perovskite Films with Large Columnar Grains via Solvent-Mediated Ostwald Ripening for Efficient Inverted Perovskite Solar Cells , 2018 .

[2]  J. Wei,et al.  Enhanced performance of perovskite solar cells by strengthening a self-embedded solvent annealing effect in perovskite precursor films , 2017 .

[3]  J. Wei,et al.  Elucidating the Key Role of a Lewis Base Solvent in the Formation of Perovskite Films Fabricated from the Lewis Adduct Approach. , 2017, ACS applied materials & interfaces.

[4]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[5]  Dong Suk Kim,et al.  High-Temperature-Short-Time Annealing Process for High-Performance Large-Area Perovskite Solar Cells. , 2017, ACS nano.

[6]  Q. Wang,et al.  ITIC surface modification to achieve synergistic electron transport layer enhancement for planar-type perovskite solar cells with efficiency exceeding 20% , 2017 .

[7]  Changli Li,et al.  Fabrication of high quality perovskite films by modulating the Pb–O bonds in Lewis acid–base adducts , 2017 .

[8]  Tao Yu,et al.  PbI2 heterogeneous-cap-induced crystallization for an efficient CH3NH3PbI3 layer in perovskite solar cells. , 2017, Chemical communications.

[9]  Tao Yu,et al.  Facile Face-Down Annealing Triggered Remarkable Texture Development in CH3NH3PbI3 Films for High-Performance Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[10]  Zhiming M. Wang,et al.  Solvent annealing of PbI2 for the high-quality crystallization of perovskite films for solar cells with efficiencies exceeding 18. , 2016, Nanoscale.

[11]  Changli Li,et al.  Enhanced performance of perovskite solar cells by modulating the Lewis acid-base reaction. , 2016, Nanoscale.

[12]  Hongyu Zhen,et al.  Highly reproducible and photocurrent hysteresis-less planar perovskite solar cells with a modified solvent annealing method , 2016 .

[13]  Anders Hagfeldt,et al.  Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% , 2016, Nature Energy.

[14]  Dong Hoe Kim,et al.  Facile fabrication of large-grain CH3NH3PbI3−xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening , 2016, Nature Communications.

[15]  Seonhee Lee,et al.  Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells , 2016, Nature Energy.

[16]  Heping Shen,et al.  Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[17]  H. Ohkita,et al.  Photovoltaic Performance of Perovskite Solar Cells with Different Grain Sizes , 2016, Advanced materials.

[18]  Chang Su Shim,et al.  In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency. , 2016, Nanoscale.

[19]  Nam-Gyu Park,et al.  Lewis Acid-Base Adduct Approach for High Efficiency Perovskite Solar Cells. , 2016, Accounts of chemical research.

[20]  Dong Yang,et al.  High efficiency flexible perovskite solar cells using superior low temperature TiO2 , 2015 .

[21]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[22]  Jinsong Huang,et al.  Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers , 2015 .

[23]  Wei Zhang,et al.  Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells , 2015 .

[24]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[25]  Jinsong Huang,et al.  Solvent Annealing of Perovskite‐Induced Crystal Growth for Photovoltaic‐Device Efficiency Enhancement , 2014, Advanced materials.

[26]  Leone Spiccia,et al.  A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. , 2014, Angewandte Chemie.

[27]  D. Friesen,et al.  Solvent effects on the spectroscopic and photophysical properties of the trans-(1,4,8,11-tetraazacyclotetradecane)diisothiocyanatochromium(III) ion, trans-[Cr(cyclam)(NCS)(2)]+. , 2007, Inorganic chemistry.

[28]  V. Gutmann Empirical parameters for donor and acceptor properties of solvents , 1976 .