Chemical and Physical Gradients along the OMC-1 Ridge

We present a survey of the distribution of 20 chemical and isotopic molecular species along the central ridge of the Orion molecular cloud from 6' north to 6' south of BN-KL observed with the QUARRY focal plane array on the FCRAO 14 m telescope, which provides an angular resolution of ≈ 50'' in the 3 mm wavelength region. We use standard tools of multivariate analysis for a systematic investigation of the similarities and differences among the maps of integrated intensities of the 32 lines observed. The maps fall in three broad classes: first, those strongly peaked toward BN-KL; second, those having rather flat distributions along the ridge; and third, those with a clear north-south gradient or contrast. We identify six positions or regions where we calculate relative abundances. Line velocities and line widths indicate that the optically thin lines generally trace the same volume of dense gas, except in the molecular bar, where C18O, C34S, H13CO+, CN, C2H, SO, and C3H2 have velocities characteristic of the bar itself, whereas the emission from other detected species is dominated by the background cloud. The strongest abundance variations in our data are the well-known enhancements seen in HCN, CH3OH, HC3N, and SO toward BN-KL and, less strongly, toward the Orion-South outflow 1.′3S. The principal result of this study is that along the extended quiescent ridge the chemical abundances, within factors of 3-4, exhibit an impressive degree of uniformity. The northern part of the ridge has a chemistry closest to that found in quiescent dense clouds. While temperature and density are similar around the northern radical-ion peak near 3.′5N and in the southern core near 4.′2S, some abundances, in particular, those of the ions HCO+ and N2H+, are significantly lower toward 4.′2S. The areas near 4.′2S and the molecular bar itself around (1.′7E, 2.′4S) stand out with peculiar and similar properties—probably caused by stronger UV fields penetrating deeper into the clumpy molecular gas. This leads to higher electron abundances and thereby reduced abundances of the ions, as well as a lack of complex molecules.

[1]  C. Aspin,et al.  An Electronic Publication Dedicated to Early Stellar Evolution and Molecular Clouds Optical Outburst of a Pre-main Sequence Object Near-ir Imaging Photometry of Ngc1333: a 3µm Survey , 2022 .

[2]  M. Heyer,et al.  Application of Principal Component Analysis to Large-Scale Spectral Line Imaging Studies of the Interstellar Medium , 1997 .

[3]  M. Wright,et al.  A Multiline Aperture Synthesis Study of Orion-KL , 1996 .

[4]  E. Bergin,et al.  Density Structure in Giant Molecular Cloud Cores , 1996 .

[5]  P. Caselli,et al.  Radio-astronomical Spectroscopy of the Hyperfine Structure of N2H+ , 1995 .

[6]  W. Danchi,et al.  The distribution of molecules in the core of OMC-1 , 1995 .

[7]  S. Green Collisional Excitation of Interstellar Sulfur Dioxide , 1994 .

[8]  E. Bergin,et al.  CH3C2H AS A TEMPERATURE PROBE IN DENSE GIANT MOLECULAR CLOUD CORES , 1994 .

[9]  Anatomy of a Photodissociation Region: High angular resolution images of molecular emission in the Orion Bar , 1994 .

[10]  N. Evans,et al.  Structure of Dense Cores in M17 SW. I. A Multitransition CS and C 34S Study , 1993 .

[11]  L. Mundy,et al.  Structure and chemistry of Orion S , 1993 .

[12]  A. Poglitsch,et al.  158 micron forbidden C II mapping of the Orion molecular cloud , 1993 .

[13]  M. Hayashi,et al.  Molecular Cloud Cores in the Orion A Cloud. I. Nobeyama CS (1--0) Survey , 1993 .

[14]  D. Jaffe,et al.  Extended CO(7→6) emission from warm gas in Orion , 1993, astro-ph/9301009.

[15]  G. White,et al.  Chemistry and structure of the OMC1 Radical Region , 1992 .

[16]  William H. Press,et al.  Numerical recipes in C (2nd ed.): the art of scientific computing , 1992 .

[17]  F. Schloerb,et al.  EVIDENCE FOR LARGE-SCALE EXPANDING MOTIONS WITHIN THE ORION A MOLECULAR CLOUD , 1992 .

[18]  F. Schloerb,et al.  A source model for the L134N molecular cloud , 1992 .

[19]  P. Goldsmith,et al.  STRUCTURE, CHEMISTRY, AND CLUMPING IN THE NGC-2071 (NORTH) MOLECULAR CLOUD , 1992 .

[20]  W. Irvine,et al.  Molecular Abundance Variations Among and Within Cold, Dark Molecular Clouds , 1992 .

[21]  Neal R. Erickson,et al.  A 15 element focal plane array for 100 GHz , 1992 .

[22]  L. Mundy,et al.  CS multitransitional studies of density distribution in star-forming regions. I. The NGC 2071 region , 1991 .

[23]  L. Ziurys,et al.  N2H+ in Orion: Chemical clues to the dynamics of the quiescent gas , 1991 .

[24]  A. Tielens,et al.  Line emission from clumpy photodissociation regions , 1990 .

[25]  Y. Murata,et al.  APERTURE SYNTHESIS OBSERVATIONS OF NH-3 IN OMC-1: FILAMENTARY STRUCTURES AROUND ORION-KL , 1990 .

[26]  A. Penzias,et al.  C-12/C-13 isotope ratio across the Galaxy from observations of C-13/O-18 in molecular clouds , 1990 .

[27]  M. Snijders,et al.  Ultraviolet variability of NGC 4151: a study using principal component analysis , 1990 .

[28]  J. Mitchell The dissociative recombination of molecular ions , 1990 .

[29]  D. Swade The physics and chemistry of the L134N molecular core , 1989 .

[30]  D. Swade Radio wavelength observations of the L134N molecular core , 1989 .

[31]  J. Stutzki,et al.  High spatial resolution isotopic CO and CS observations of M17 SW - The clumpy structure of the molecular cloud core , 1989 .

[32]  K. Johnston,et al.  H2CO maps of high-density molecular fragments 3 arcmin north of Orion-KL , 1989 .

[33]  T. Graedel,et al.  Ion-molecule chemistry of dense interstellar clouds - Nitrogen-, oxygen-, and carbon-bearing molecule abundances and isotopic ratios , 1989 .

[34]  Brian Everitt,et al.  Principles of Multivariate Analysis , 2001 .

[35]  J. Stutzki,et al.  The Orion Molecular Cloud and Star-Forming Region , 1988 .

[36]  L. Mundy,et al.  High-resolution images of the Orion molecular ridge in the CS J = 2-1 transition , 1988 .

[37]  R. Genzel,et al.  Dispersal of dense protostellar material - NH3 hot cores and outflows in Sagittarius B2 , 1987 .

[38]  Geoffrey A. Blake,et al.  Molecular abundances in OMC-1 - the chemical composition of interstellar molecular clouds and the influence of massive star formation , 1987 .

[39]  P. Friberg,et al.  Observations of SiO toward OMC-1 - a new outflow source 1. 5 arcmin south of Orion-KL , 1987 .

[40]  P. Goldsmith,et al.  Small-scale structure and chemical differentiation in the central region of the Sagittarius B2 molecular cloud , 1987 .

[41]  P. Goldsmith,et al.  Variations in the HCN/HNC abundance ratio in the Orion molecular cloud. , 1986, The Astrophysical journal.

[42]  S. Green Collisional Excitation of Interstellar Methyl Cyanide , 1986 .

[43]  R. Wilson,et al.  Filamentary structure in the Orion molecular cloud , 1986 .

[44]  L. Mundy,et al.  Protostellar Condensations within the Orion Ridge , 1986 .

[45]  M. Morris,et al.  The large system of molecular clouds in Orion and Monoceros , 1986 .

[46]  R. Linke,et al.  A Survey of the Millimeter-Wave Spectrum of Sagittarius B2 , 1986 .

[47]  A. Tielens,et al.  Photodissociation regions. II. A model for the Orion photodissociation region. , 1985 .

[48]  E. Herbst,et al.  Synthesis of complex molecules in dense interstellar clouds via gas-phase chemistry: a pseudo time-dependent calculation , 1984 .

[49]  D. Jaffe,et al.  Far-infrared and submillimeter observations of the multiple cores in S255, W3, and OMC-1 - Evidence for fragmentation? , 1984 .

[50]  L. Mundy,et al.  Models of molecular clouds. I. Multitransition study of CS. , 1984 .

[51]  J. M. Hollis,et al.  The kinetic temperature and CH3CCH column density profiles in SGR B2,Orion and DR 21 , 1983 .

[52]  C. Townes,et al.  Small rotating clouds of stellar mass in Orion molecular cloud 1 , 1983 .

[53]  P. J. Huggins,et al.  Symposium on the Orion Nebula to Honor Henry Draper, New York University, New York, NY, December 4, 5, 1981, Proceedings , 1982 .

[54]  Vic Barnett,et al.  Interpreting multivariate data , 1982 .

[55]  P. Macdonald,et al.  Interpreting Multivariate Data , 1982 .

[56]  S. Whitcomb,et al.  A high resolution submillimeter map of OMC-1 , 1982 .

[57]  M. Kutner,et al.  The abundance and distribution of interstellar C 2 H. , 1978 .

[58]  S. Chapman,et al.  Collisional excitation of interstellar molecules - Linear molecules CO, CS, OCS, and HC3N , 1978 .

[59]  P. Thaddeus,et al.  On the relationship of interstellar N2H/+/, HCO/+/, HCN, and CN , 1977 .

[60]  W. D. Watson,et al.  An interpretation of the anomalous variation of N2H+/HCO+/SO2 in Orion - Support for ion-molecule reactions , 1977 .

[61]  S. Green Rotational excitation of molecular ions in interstellar clouds , 1975 .

[62]  P. Thaddeus,et al.  Rotational excitation of HCN by collisions , 1974 .

[63]  Frank J. Low,et al.  Discovery of an infrared nebula in Orion. , 1967 .

[64]  G. Neugebauer,et al.  Observations of an infrared star in the Orion nebula. , 1967 .

[65]  T. Deeming,et al.  Stellar Spectral Classification: I. Application of Component Analysis , 1964 .

[66]  Maurice G. Kendall,et al.  The advanced theory of statistics , 1945 .