Translational attenuation: the regulation of bacterial resistance to the macrolide-lincosamide-streptogramin B antibiotics.

The regulation of ermC is described in detail as an example of regulation on the level of translation. ermC specifies a ribosomal RNA methylase which confers resistance to the macrolide-lincosamide-streptogramin B group of antibiotics. Synthesis of the ermC gene product is induced by erythromycin, a macrolide antibiotic. Stimulation of methylase synthesis is mediated by binding of erythromycin to an unmethylated ribosome. The translational attenuation model, supported by sequencing data and by mutational analysis, proposes that binding of erythromycin causes stalling of a ribosome during translation of a "leader peptide", resulting in isomerization of the ermC transcript from an inactive to an active conformer. The ermC system is analogous to the transcriptional attenuation systems described for certain biosynthetic operons. ermC is unique in that interaction with a small molecule inducer mediates regulation on the translational level. However, it is but one example of nontranscriptional -level control of protein synthesis. Other systems are discussed in which control is also exerted through alterations of RNA conformation and an attempt is made to understand ermC in this more general context. Finally, other positive examples of translational attenuation are presented.

[1]  H. Halvorson,et al.  Two erythromycin-resistance plasmids of diverse origin and their effect on sporulation in Bacillus subtilis. , 1980, Journal of general microbiology.

[2]  J. Davies,et al.  Mechanism of kasugamycin resistance in Escherichia coli. , 1972, Nature: New biology.

[3]  W. V. Shaw COMPARATIVE ENZYMOLOGY OF CHLORAMPHENICOL RESISTANCE * , 1971 .

[4]  J. Steitz Genetic Signals and Nucleotide Sequences in Messenger RNA , 1979 .

[5]  J. Jonák,et al.  Effects of macrolide antibiotics on the ribosomal peptidyl transferase in cell-free systems derived from Escherichia coli B and erythromycin-resistant muytant of Escherichia coli B. , 1971, Biochimica et biophysica acta.

[6]  J. S. Parkinson,et al.  Overlapping genes at the cheA locus of Escherichia coli. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[7]  E. Linney,et al.  Two Proteins of Gene A of ϕX174 , 1973 .

[8]  B. Weisblum,et al.  23S ribosomal ribonucleic acid of macrolide-producing streptomycetes contains methylated adenine , 1979, Journal of bacteriology.

[9]  L. Devriese,et al.  Macrolide-lincosamide-streptogramin resistance patterns in Clostridium perfringens from animals , 1981, Antimicrobial Agents and Chemotherapy.

[10]  S. Pestka,et al.  Studies on the formation of transfer ribonucleic acid-ribosome complexes. IV. Effect of antibiotics on steps of bacterial protein synthesis: some new ribosomal inhibitors of translocation. , 1971, The Journal of biological chemistry.

[11]  Michael Zuker,et al.  Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information , 1981, Nucleic Acids Res..

[12]  S. Mitsuhashi,et al.  Methylated Adenine in the 23S Ribosomal RNA of Staphylococcus aureus Carrying Temperature‐Inducible Resistance to Macrolide Antibiotics , 1979, Microbiology and immunology.

[13]  M. Coyle,et al.  Erythromycin and clindamycin resistance in Corynebacterium diphtheriae from skin lesions , 1979, Antimicrobial Agents and Chemotherapy.

[14]  C. Carlier,et al.  Plasmid-linked tetracycline and erythromycin resistance in group D "streptococcus". , 1972, Annales de l'Institut Pasteur.

[15]  A. Seth,et al.  Specific binding of a chemically synthesized prokaryotic ribosome recognition site. Prospect for molecular cloning and expression of eukaryotic genes. , 1980, The Journal of biological chemistry.

[16]  J. Karam,et al.  Mutation to Overproduction of Bacteriophage T4 Gene Products , 1974, Journal of virology.

[17]  F. Kramer,et al.  Secondary structure formation during RNA synthesis. , 1981, Nucleic acids research.

[18]  Jill K Thompson,et al.  Ribose methylation and resistance to thiostrepton , 1979, Nature.

[19]  S. Pestka 10 – Inhibitors of Protein Synthesis , 1977 .

[20]  D. Clewell,et al.  Characterization of a Plasmid Determining Resistance to Erythromycin, Lincomycin, and Vernamycin Bα in a Strain of Streptococcus pyogenes , 1974, Antimicrobial Agents and Chemotherapy.

[21]  S. Levy,et al.  Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[22]  H. Murialdo,et al.  Morphogenetic genes C and Nu3 overlap in bacteriophage λ , 1980, Nature.

[23]  D. Crothers,et al.  Improved estimation of secondary structure in ribonucleic acids. , 1973, Nature: New biology.

[24]  I. Chopra,et al.  Tetracycline resistance genes from Bacillus plasmid pAB124 confer decreased accumulation of the antibiotic in Bacillus subtilis but not in Escherichia coli , 1981, Journal of bacteriology.

[25]  Hans A. Heus,et al.  Calorimetric measurements of the destabilisation of a ribosomal RNA hairpin by dimethylation of two adjacent adenosines , 1983, Nucleic Acids Res..

[26]  A. Okuyama,et al.  Differential effects of antibiotics on peptidyl transferase reactions. , 1972, Biochemical and biophysical research communications.

[27]  D. Dubin,et al.  The "erythromycin-resistance" methylated sequence of Staphylococcus aureus ribosomal RNA. , 1983, Plasmid.

[28]  K. R. Jones,et al.  Transferable lincosamide-macrolide resistance in Bacteroides. , 1979, Plasmid.

[29]  H. Koornhof,et al.  Emergence of multiply resistant pneumococci. , 1978, The New England journal of medicine.

[30]  D. Porschke,et al.  Thermodynamic and kinetic parameters of an oligonucleotide hairpin helix. , 1974, Biophysical chemistry.

[31]  Maley,et al.  Level of specific prereplicative mRNA's during bacteriophage T4 regA-, 43- and T4 43- infection of Escherichia coli B , 1976, Journal of virology.

[32]  S. Pestka,et al.  Antibiotics as Probes of Ribosome Structure: Binding of Chloramphenicol and Erythromycin to Polyribosomes; Effect of Other Antibiotics , 1974, Antimicrobial Agents and Chemotherapy.

[33]  B. Weisblum,et al.  Erythromycin-inducible Resistance in Staphylococcus aureus: Survey of Antibiotic Classes Involved , 1969, Journal of bacteriology.

[34]  I. Tinoco,et al.  Stability of ribonucleic acid double-stranded helices. , 1974, Journal of molecular biology.

[35]  M. Nomura,et al.  Regulation of ribosomal protein synthesis in Escherichia coli by selective mRNA inactivation. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[36]  S. Iordanescu Incompatibility-deficient derivatives of a small staphylococcal plasmid. , 1979, Plasmid.

[37]  S. Ōmura,et al.  Effect of Leucomycins and Analogues on Binding [14C]Erythromycin to Escherichia coli Ribosomes , 1974, Antimicrobial Agents and Chemotherapy.

[38]  K. Nierhaus,et al.  Proteins fro Escherichia coli ribosomes involved in the binding of erythromycin. , 1978, Journal of molecular biology.

[39]  B. Weisblum,et al.  Alteration of 23 S ribosomal RNA and erythromycin-induced resistance to lincomycin and spiramycin in Staphylococcus aureus. , 1973, Journal of molecular biology.

[40]  D. Dubnau,et al.  Characterization of a plasmid-specified ribosome methylase associated with macrolide resistance. , 1981, Nucleic acids research.

[41]  P. Pattee,et al.  TRANSDUCTION OF RESISTANCE TO SOME MACROLIDE ANTIBIOTICS IN STAPHYLOCOCCUS AUREUS , 1962, Journal of bacteriology.

[42]  H. Heus,et al.  Adenosine dimethylation of 16S ribosomal RNA: effect of the methylgroups on local conformational stability as deduced from electrophoretic mobility of RNA fragments in denaturing polyacrylamide gels. , 1981, Nucleic acids research.

[43]  O. Uhlenbeck,et al.  Thermodynamics and kinetics of the helix‐coil transition of oligomers containing GC base pairs , 1973 .

[44]  Drug resistance in Staphylococcus aureus. Induction of macrolide resistance by erythromycin, oleandomycin and their derivatives. , 1975, Japanese journal of microbiology.

[45]  L. Gold,et al.  Translational regulation: identification of the site on bacteriophage T4 rIIB mRNA recognized by the regA gene function. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[46]  B. Weisblum,et al.  Erythromycin-Inducible Resistance in Staphylococcus aureus: Requirements for Induction , 1971, Journal of bacteriology.

[47]  D. Dubnau,et al.  Studies on the synthesis of plasmid-coded proteins and their control in Bacillus subtilis minicells. , 1979, Plasmid.

[48]  W. Sauerbier,et al.  Control of Gene Function in Bacteriophage T4 IV. Post-Transcriptional Shutoff of Expression of Early Genes , 1973, Journal of virology.

[49]  D. Dubnau,et al.  Conformational alteration of mRNA structure and the posttranscriptional regulation of erythromycin-induced drug resistance. , 1980, Nucleic acids research.

[50]  B. Weisblum,et al.  Structure of an inducibly methylatable nucleotide sequence in 23S ribosomal ribonucleic acid from erythromycin-resistant Staphylococcus aureus. , 1973, Biochemistry.

[51]  Ernest Frederick Gale,et al.  The Molecular basis of antibiotic action , 1972 .

[52]  L. Gold,et al.  Autogenous translational repression of bacteriophage T4 gene 32 expression in vitro. , 1978, Journal of molecular biology.

[53]  D. Dubnau,et al.  Plasmid copy number control: isolation and characterization of high-copy-number mutants of plasmid pE194 , 1979, Journal of bacteriology.

[54]  K. McQuillen,et al.  Bacterial protein synthesis: the effects of antibiotics. , 1967, Journal of molecular biology.

[55]  C. Sigmund,et al.  Erythromycin resistance due to a mutation in a ribosomal RNA operon of Escherichia coli. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[56]  B. Weisblum,et al.  Altered methylation of ribosomal RNA in an erythromycin-resistant strain of Staphylococcus aureus. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[57]  H. Teraoka,et al.  An alteration in ribosome function caused by equimolar binding of erythromycin. , 1971, Biochimica et biophysica acta.

[58]  M. Nomura,et al.  Feedback regulation of ribosomal protein gene expression in Escherichia coli. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[59]  D Court,et al.  Regulatory sequences involved in the promotion and termination of RNA transcription. , 1979, Annual review of genetics.

[60]  S. Pestka Studies on transfer ribonucleic acid-ribosome complexes. XIX. Effect of antibiotics on peptidyl puromycin synthesis on polyribosoms from Escherichia coli. , 1972, The Journal of biological chemistry.

[61]  T. Grundström,et al.  The E. coli β-lactamase attenuator mediates growth rate-dependent regulation , 1981, Nature.

[62]  J. Černá,et al.  The effect of antibiotics on the coded binding of peptidyl-tRNA to the ribosome and on the transfer of the peptidyl residue to puromycin. , 1969, European journal of biochemistry.

[63]  B. Weisblum,et al.  Deoxyribonucleic acid sequence common to staphylococcal and streptococcal plasmids which specify erythromycin resistance , 1979, Journal of bacteriology.

[64]  H. Teraoka,et al.  Binding of erythromycin to Escherichia coli ribosomes. , 1966, Biochimica et biophysica acta.

[65]  A. Kaji,et al.  Release of (oligo) peptidyl-tRNA from ribosomes by erythromycin A. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Michael A. Savageau,et al.  Autogenous and Classical Regulation of Gene Expression: A General Theory and Experimental Evidence , 1979 .

[67]  S. Levy,et al.  Two complementation groups mediate tetracycline resistance determined by Tn10 , 1982, Journal of bacteriology.

[68]  H. Ishitsuka,et al.  Comparative studies on the mechanism of action of lincomycin, streptomycin, and erythromycin. , 1969, Biochemical and biophysical research communications.

[69]  D. Bouanchaud,et al.  R Plasmids in Streptococcus agalactiae (Group B) , 1976, Antimicrobial Agents and Chemotherapy.

[70]  H. Ennis Polysome Metabolism in Escherichia coli: Effect of Antibiotics on Polysome Stability , 1972, Antimicrobial Agents and Chemotherapy.

[71]  T. Blumenthal,et al.  Overlapping genes in rna phage: a new protein implicated in lysis , 1979, Cell.

[72]  H. A. Boer,et al.  Growth-rate-dependent regulation of ribosome synthesis in E. coli: Expression of the lacZ and galK genes fused to ribosomal promoters , 1981, Cell.

[73]  R. Novick,et al.  Incompatibility and molecular relationships between small Staphylococcal plasmids carrying the same resistance marker. , 1978, Plasmid.

[74]  R. Skinner,et al.  Dimethylation of Adenine and the Resistance of Streptomyces erythraeus to Erythromycin , 1982 .

[75]  S. Horinouchi,et al.  A complex attenuator regulates inducible resistance to macrolides, lincosamides, and streptogramin type B antibiotics in Streptococcus sanguis , 1983, Journal of bacteriology.

[76]  F. Schmidt,et al.  Site of action of a ribosomal RNA methylase conferring resistance to thiostrepton. , 1982, The Journal of biological chemistry.

[77]  E. Cundliffe Mechanism of resistance to thiostrepton in the producing-organism Streptomyces azureus , 1978, Nature.

[78]  F. Schmidt,et al.  Site of action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. , 1983, The Journal of biological chemistry.

[79]  B. Poldermans,et al.  Studies on the function of two adjacent N6,N6-dimethyladenosines near the 3' end of 16 S ribosomal RNA of Escherichia coli. III. Purification and properties of the methylating enzyme and methylase-30 S interactions. , 1979, The Journal of biological chemistry.

[80]  S. Horinouchi,et al.  Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance , 1982, Journal of bacteriology.

[81]  A. Kaji,et al.  Further studies on the mechanism of erythromycin action. , 1973, Biochimica et biophysica acta.

[82]  J. Shine,et al.  The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[83]  J. Mao,et al.  The intermolecular complex of erythromycin and ribosome. , 1969, Journal of molecular biology.

[84]  S. Normark,et al.  In vivo regulation of chromosomal beta-lactamase in Escherichia coli , 1979, Journal of bacteriology.

[85]  W. Fiers,et al.  Nucleotide Sequence of the Gene Coding for the Bacteriophage MS2 Coat Protein , 1972, Nature.

[86]  D. Vazquez Binding of chloramphenicol to ribosomes. The effect of a number of antibiotics. , 1966, Biochimica et biophysica acta.

[87]  S. Iordanescu Three distinct plasmids originating in the same Staphylococcus aureus strain. , 1976, Archives roumaines de pathologie experimentales et de microbiologie.

[88]  M. Nomura,et al.  Feedback regulation of ribosomal protein gene expression in Escherichia coli: structural homology of ribosomal RNA and ribosomal protein MRNA. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[89]  D. Otto,et al.  Erythromycin, carbomycin, and spiramycin inhibit protein synthesis by stimulating the dissociation of peptidyl-tRNA from ribosomes , 1982, Antimicrobial Agents and Chemotherapy.

[90]  B. D. Davis,et al.  Selective action of erythromycin on initiating ribosomes. , 1974, Biochemistry.

[91]  D. Dubnau,et al.  Naturally occurring macrolide-lincosamide-streptogramin B resistance in Bacillus licheniformis , 1981, Journal of bacteriology.

[92]  B. Weisblum,et al.  A family of r-determinants in Streptomyces spp. that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibiotics , 1981, Journal of bacteriology.

[93]  P. Dennis,et al.  Transcriptional and post-transcriptional control of RNA polymerase and ribosomal protein genes cloned on composite ColE1 plasmids in the bacterium Escherichia coli. , 1979, The Journal of biological chemistry.

[94]  J. Mao,et al.  Erythromycin, a peptidyltransferase effector. , 1972, Biochemistry.

[95]  M. Parker,et al.  Prostatic steroid-binding protein. Isolation and characterization of C3 genes. , 1983, The Journal of biological chemistry.

[96]  K. Tanaka,et al.  Peptidyl puromycin synthesis; effect of several antibiotics which act on 50 S ribosomal subunits , 1971, FEBS letters.

[97]  E. Cundliffe Antibiotics and polyribosomes. II. Some effects of lincomycin, spiramycin, and streptogramin A in vivo. , 1969, Biochemistry.

[98]  D. Dubnau,et al.  Posttranscriptional regulation of an erythromycin resistance protein specified by plasmic pE194. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[99]  D. Vázquez,et al.  Ribosome-catalysed peptidyl transfer: effects of some inhibitors of protein synthesis. , 1967, Journal of molecular biology.

[100]  J. Mao,et al.  Effects of macrolides on peptide-bond formation and translocation. , 1971, Biochemistry.

[101]  S. Mitsuhashi,et al.  MACROLIDE RESISTANCE IN STAPHYLOCOCCI , 1971 .

[102]  C Yanofsky,et al.  Attenuation in amino acid biosynthetic operons. , 1982, Annual review of genetics.

[103]  Jill K Thompson,et al.  Purification and Properties of an RNA Methylase Produced by Streptomyces azureus and Involved in Resistance to Thiostrepton , 1981 .

[104]  G. Stent,et al.  RNA chain growth rates in Escherichia coli. , 1969, Journal of molecular biology.

[105]  D. Dubnau,et al.  Regulation of Plasmid Specified MLS-Resistance in Bacillus subtilis by Conformational Alteration of RNA Structure , 1981 .

[106]  M. Nomura,et al.  Feedback regulation of ribosomal protein synthesis in Escherichia coli , 1982 .

[107]  J. Rabinowitz,et al.  Species Specific Translation: Characterization of B. subtilis Ribosome Binding Sites , 1982 .

[108]  P. Pattee,et al.  INDUCIBLE RESISTANCE TO ERYTHROMYCIN IN STAPHYLOCOCCUS AUREUS , 1964, Journal of bacteriology.

[109]  M. Eigen,et al.  Co-operative non-enzymic base recognition. 3. Kinetics of the helix-coil transition of the oligoribouridylic--oligoriboadenylic acid system and of oligoriboadenylic acid alone at acidic pH. , 1971, Journal of molecular biology.

[110]  R. Fernández-Muñoz,et al.  Substrate- and antibiotic-binding sites at the peptidyl-transferase centre of Escherichia coli ribosomes. Studies on the chloramphenicol. lincomycin and erythromycin sites. , 1971, European journal of biochemistry.

[111]  M. Nomura,et al.  In vitro expression of Escherichia coli ribosomal protein genes: autogenous inhibition of translation. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[112]  H. Yang,et al.  Synthesis of an R plasmid protein associated with tetracycline resistance is negatively regulated. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[113]  N. Brot,et al.  Autogenous control of Escherichia coli ribosomal protein L10 synthesis in vitro. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[114]  S. Horinouchi,et al.  Posttranscriptional modification of mRNA conformation: mechanism that regulates erythromycin-induced resistance. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[115]  N. Oleinick,et al.  Two types of binding of erythromycin to ribosomes from antibiotic-sensitive and -resistant Bacillus subtilis 168. , 1969, The Journal of biological chemistry.

[116]  R. Schmitt,et al.  Tn1721-encoded tetracycline resistance: mapping of structural and regulatory genes mediating resistance , 1983, Journal of bacteriology.