Fabrication of Ti 3 SiC 2 ‐Ti 4 SiC 3 ‐SiC ceramic composites through carbosilicothermic reduction of TiO 2

[1]  A. V. Leonov,et al.  Fabrication of Ti3SiC2 and Ti4SiC3 MAX phase ceramics through reduction of TiO2 with SiC , 2017 .

[2]  M. Presniakov,et al.  Synthesis of a Bulk Ti4SiC3 MAX Phase by Reduction of TiO2 with SiC. , 2016, Inorganic chemistry.

[3]  E. Istomina,et al.  Preparation of Ti3SiC2 through reduction of titanium dioxide with silicon carbide , 2016, Inorganic Materials.

[4]  V. Grass,et al.  Fabrication of Ti3SiC2-based composites from titania-silica raw material , 2015 .

[5]  Tianxing Wang,et al.  High pressure phase stability, mechanical and optical properties of Ti4SiC3 compound: ab initio study , 2014 .

[6]  Y. Sakka,et al.  Synthesis of High‐Purity Ti3SiC2 by Microwave Sintering , 2014 .

[7]  Michel W. Barsoum,et al.  MAX Phases: Properties of Machinable Ternary Carbides and Nitrides , 2013 .

[8]  W. Ching,et al.  Intrinsic Mechanical Properties of 20 MAX-Phase Compounds , 2013 .

[9]  V. Grass,et al.  Fabrication of Ti3SiC2-based ceramic matrix composites by a powder-free SHS technique , 2013 .

[10]  G. Song,et al.  A dense and fine-grained SiC/Ti3Si(Al)C2 composite and its high-temperature oxidation behavior , 2012 .

[11]  Michel W. Barsoum,et al.  Elastic and Mechanical Properties of the MAX Phases , 2011 .

[12]  Zhengming Sun,et al.  Progress in research and development on MAX phases: a family of layered ternary compounds , 2011 .

[13]  J. Knott 25 years of Materials Science and Technology , 2009 .

[14]  Lianjun Wang,et al.  Rapid fabrication of Ti3SiC2–SiC nanocomposite using the spark plasma sintering-reactive synthesis (SPS-RS) method , 2007 .

[15]  Y. Zhou,et al.  In situ reaction synthesis and characterization of Ti3Si(Al)C2/SiC composites , 2006 .

[16]  Ola Wilhelmsson,et al.  Growth and characterization of MAX-phase thin films , 2005 .

[17]  J. Emmerlich,et al.  Growth of Ti3SiC2 thin films by elemental target magnetron sputtering , 2004 .

[18]  R. Ahuja,et al.  Mn+1AXn phases in the Ti-Si-C system studied by thin-film synthesis and ab initio calculations , 2004 .

[19]  Lai-fei Cheng,et al.  In situ synthesis of Ti3SiC2/SiC composite by displacement reaction of Si and TiC , 2004 .

[20]  M. Barsoum,et al.  Synthesis and characterization of 0.3 Vf TiC–Ti3SiC2 and 0.3 Vf SiC–Ti3SiC2 composites , 2003 .

[21]  Y. Miyamoto,et al.  Rapid synthesis of dense Ti3SiC2 by spark plasma sintering , 2002 .

[22]  Yanchun Zhou,et al.  Temperature fluctuation/hot pressing synthesis of Ti3SiC2 , 2000 .

[23]  Michel W. Barsoum,et al.  The MN+1AXN phases: A new class of solids , 2000 .

[24]  E. Levashov,et al.  SHS and formation of structure in composite materials in three-component Ti — Si — C, Ti — Si — N, and Ti — B — N systems , 1999 .

[25]  Yanchun Zhou,et al.  The compressive property and brittle-to-ductile transition of Ti3SiC2 ceramics , 1999 .

[26]  M. Barsoum,et al.  Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2 , 1996 .

[27]  G. Nolze,et al.  POWDER CELL– a program for the representation and manipulation of crystal structures and calculation of the resulting X‐ray powder patterns , 1996 .

[28]  J. Lis,et al.  Solid combustion synthesis of Ti3SiC2 , 1989 .

[29]  T. Hirai,et al.  Chemically vapor deposited Ti3SiC2 , 1987 .

[30]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .