An extension of the order bound for AG codes

The most successful method to obtain lower bounds for the minimum distance of an algebraic geometric code is the order bound, which generalizes the Feng-Rao bound. We provide a significant extension of the bound that improves the order bounds by Beelen and by Duursma and Park. We include an exhaustive numerical comparison of the different bounds for 10168 two-point codes on the Suzuki curve of genus g=124 over the field of 32 elements. Keywords: algebraic geometric code, order bound, Suzuki curve.

[1]  Henning Stichtenoth,et al.  Further improvements on the designed minimum distance of algebraic geometry codes , 2009 .

[2]  Henning Stichtenoth,et al.  Group codes on certain algebraic curves with many rational points , 1990, Applicable Algebra in Engineering, Communication and Computing.

[3]  Peter Beelen,et al.  A generalization of the Weierstrass semigroup , 2006 .

[4]  Iwan Duursma,et al.  Algebraic geometry codes: general theory , 2008 .

[5]  Maria Bras-Amorós,et al.  On Semigroups Generated by Two Consecutive Integers and Improved Hermitian Codes , 2006, IEEE Transactions on Information Theory.

[6]  Gretchen L. Matthews Codes from the Suzuki function field , 2004, IEEE Transactions on Information Theory.

[7]  Ruud Pellikaan,et al.  The minimum distance of codes in an array coming from telescopic semigroups , 1995, IEEE Trans. Inf. Theory.

[8]  Carlos Munuera,et al.  On the parameters of algebraic-geometry codes related to Arf semigroups , 1999, IEEE Trans. Inf. Theory.

[9]  Cícero Carvalho,et al.  On Goppa Codes and Weierstrass Gaps at Several Points , 2005, Des. Codes Cryptogr..

[10]  Tom Høholdt,et al.  An elementary approach to algebraic geometry codes , 1998 .

[11]  Jason McCullough,et al.  A GENERALIZED FLOOR BOUND FOR THE MINIMUM DISTANCE OF GEOMETRIC GOPPA CODES AND ITS APPLICATION TO TWO-POINT CODES , 2004, math/0408341.

[12]  Iwan M. Duursma,et al.  Majority coset decoding , 1993, IEEE Trans. Inf. Theory.

[13]  T. R. N. Rao,et al.  Decoding algebraic-geometric codes up to the designed minimum distance , 1993, IEEE Trans. Inf. Theory.

[14]  Gretchen L. Matthews,et al.  On the floor and the ceiling of a divisor , 2006, Finite Fields Their Appl..

[15]  Seon Jeong Kim On the index of the Weierstrass semigroup of a pair of points on a curve , 1994 .

[16]  Iwan M. Duursma,et al.  Coset bounds for algebraic geometric codes , 2008, Finite Fields Their Appl..

[17]  Iwan M. Duursma,et al.  Geometric Reed-Solomon codes of length 64 and 65 over F8 , 2003, IEEE Trans. Inf. Theory.

[18]  Gretchen L. Matthews Weierstrass Pairs and Minimum Distance of Goppa Codes , 2001, Des. Codes Cryptogr..

[19]  Peter Beelen,et al.  The order bound for general algebraic geometric codes , 2007, Finite Fields Their Appl..