On subtrees of trees

We study that over a certain type of trees (e.g., all trees or all binary trees) with a given number of vertices, which trees minimize or maximize the total number of subtrees (or subtrees with at least one leaf). Trees minimizing the total number of subtrees (or subtrees with at least one leaf) usually maximize the Wiener index, and vice versa. In [L.A. Szekely, H. Wang, Binary trees with the largest number of subtrees, submitted for publication], we described the structure of binary trees maximizing the total number of subtrees, here we provide a formula for this maximum value. We extend here the results from [L.A. Szekely, H. Wang, Binary trees with the largest number of subtrees, submitted for publication] to binary trees maximizing the total number of subtrees with at least one leaf-this was first investigated by Knudsen [Lecture Notes in Bioinformatics, vol. 2812, Springer-Verlag, 2003, 433-446] to provide upper bound for the time complexity of his multiple parsimony alignment with affine gap cost using a phylogenetic tree. Also, we show that the techniques of [L.A. Szekely, H. Wang, Binary trees with the largest number of subtrees, submitted for publication] can be adapted to the minimization of Wiener index among binary trees, first solved in [M. Fischermann, A. Hoffmann, D. Rautenbach, L.A. Szekely, L. Volkmann, Discrete Appl. Math. 122 (1-3) (2002) 127-137] and [F. Jelen, E. Triesch, Discrete Appl. Math. 125 (2-3) (2003) 225-233]. Using the number of subtrees containing a particular vertex, we define the subtree core of the tree, a new concept analogous to, but different from the concepts of center and centroid.

[1]  Bohdan Zelinka,et al.  Medians and peripherians of trees , 1968 .

[2]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[3]  Alan Demlow,et al.  Local a posteriori estimates for pointwise gradient errors in finite element methods for elliptic problems , 2007, Math. Comput..

[4]  D. A. Field Laplacian smoothing and Delaunay triangulations , 1988 .

[5]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[6]  Qiang Du,et al.  Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations , 2002, Parallel Comput..

[7]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[8]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[9]  T. Myers,et al.  A mathematical model for atmospheric ice accretion and water flow on a cold surface , 2004 .

[10]  P. George,et al.  OPTIMAL DELAUNAY POINT INSERTION , 1996 .

[11]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[12]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[13]  Stanimire Tomov,et al.  Explicit and Averaging A Posteriori Error Estimates for Adaptive Finite Volume Methods , 2004, SIAM J. Numer. Anal..

[14]  Qiang Du,et al.  Convergence of the Lloyd Algorithm for Computing Centroidal Voronoi Tessellations , 2006, SIAM J. Numer. Anal..

[15]  Peter Hansbo,et al.  On advancing front mesh generation in three dimensions , 1995 .

[16]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[17]  Stanimire Tomov,et al.  A Posteriori Error Estimates for Finite Volume Element Approximations of Convection–Diffusion–Reaction Equations , 2002 .

[18]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[19]  Weidong Zhao,et al.  Adaptive Finite Element Methods for Elliptic PDEs Based on Conforming Centroidal Voronoi-Delaunay Triangulations , 2006, SIAM J. Sci. Comput..

[20]  Desheng Wang,et al.  Tetrahedral mesh generation and optimization based on centroidal Voronoi tessellations , 2003 .

[21]  H. Borouchaki,et al.  Fast Delaunay triangulation in three dimensions , 1995 .

[22]  S. Osher,et al.  Solving variational problems and partial differential equations mapping into general target manifolds , 2004 .

[23]  Paresh Parikh,et al.  Generation of three-dimensional unstructured grids by the advancing-front method , 1988 .

[24]  N. Sloane,et al.  Some Doubly Exponential Sequences , 1973, The Fibonacci Quarterly.

[25]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[26]  László Lovász,et al.  Combinatorial problems and exercises (2. ed.) , 1993 .

[27]  Ricardo H. Nochetto,et al.  A finite element method for surface diffusion: the parametric case , 2005 .

[28]  Qiang Du,et al.  Finite Volume Methods on Spheres and Spherical Centroidal Voronoi Meshes , 2005, SIAM J. Numer. Anal..

[29]  LongChen,et al.  OPTIMAL DELAUNAY TRIANGULATIONS , 2004 .

[30]  N. Weatherill,et al.  Efficient three‐dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints , 1994 .

[31]  Emmanuel Hebey,et al.  Sobolev Spaces on Riemannian Manifolds , 1996 .

[32]  T. Apel,et al.  Clement-type interpolation on spherical domains—interpolation error estimates and application to a posteriori error estimation , 2005 .

[33]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[34]  C. Jordan Sur les assemblages de lignes. , 1869 .

[35]  M. Yvinec,et al.  Variational tetrahedral meshing , 2005, SIGGRAPH 2005.

[36]  C. Taylor,et al.  Predictive medicine: computational techniques in therapeutic decision-making. , 1999, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[37]  F. Mémoli,et al.  Implicit brain imaging , 2004, NeuroImage.

[38]  Bjarne Knudsen,et al.  Optimal Multiple Parsimony Alignment with Affine Gap Cost Using a Phylogenetic Tree , 2003, WABI.

[39]  Frank Harary,et al.  Distance in graphs , 1990 .

[40]  Susanne C. Brenner,et al.  Multigrid methods for the computation of singular solutions and stress intensity factors III: interface singularities , 2003 .

[41]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[42]  P. L. Evans,et al.  STEADY AND UNSTEADY SOLUTIONS FOR COATING FLOW ON A ROTATING HORIZONTAL CYLINDER: TWO-DIMENSIONAL THEORETICAL AND NUMERICAL MODELING , 2004 .

[43]  Eberhard Triesch,et al.  Superdominance order and distance of trees with bounded maximum degree , 2003, Discret. Appl. Math..

[44]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[45]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[46]  Jonathan Richard Shewchuk,et al.  What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.

[47]  Roger C. Entringer,et al.  Distance in graphs , 1976 .

[48]  M. Gunzburger,et al.  Voronoi-based finite volume methods, optimal Voronoi meshes, and PDEs on the sphere ☆ , 2003 .

[49]  I. Gutman,et al.  Wiener Index of Trees: Theory and Applications , 2001 .

[50]  T. Baker Automatic mesh generation for complex three-dimensional regions using a constrained Delaunay triangulation , 1989, Engineering with Computers.

[51]  Qiang Du,et al.  Anisotropic Centroidal Voronoi Tessellations and Their Applications , 2005, SIAM J. Sci. Comput..

[52]  Dieter Rautenbach,et al.  Wiener index versus maximum degree in trees , 2002, Discret. Appl. Math..

[53]  Rüdiger Verfürth,et al.  A Posteriori Estimators for the Finite Volume Discretization of an Elliptic Problem , 2004, Numerical Algorithms.

[54]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[55]  Qiang Du,et al.  Grid generation and optimization based on centroidal Voronoi tessellations , 2002, Appl. Math. Comput..

[56]  Ivo Babuška,et al.  A Posteriori Error Analysis of Finite Element Solutions for One-Dimensional Problems , 1981 .

[57]  Carsten Carstensen,et al.  Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis , 2004, Numerische Mathematik.