On subtrees of trees
暂无分享,去创建一个
[1] Bohdan Zelinka,et al. Medians and peripherians of trees , 1968 .
[2] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[3] Alan Demlow,et al. Local a posteriori estimates for pointwise gradient errors in finite element methods for elliptic problems , 2007, Math. Comput..
[4] D. A. Field. Laplacian smoothing and Delaunay triangulations , 1988 .
[5] Per-Olof Persson,et al. A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..
[6] Qiang Du,et al. Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations , 2002, Parallel Comput..
[7] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[8] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[9] T. Myers,et al. A mathematical model for atmospheric ice accretion and water flow on a cold surface , 2004 .
[10] P. George,et al. OPTIMAL DELAUNAY POINT INSERTION , 1996 .
[11] Kunibert G. Siebert,et al. Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.
[12] Jonathan Richard Shewchuk,et al. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.
[13] Stanimire Tomov,et al. Explicit and Averaging A Posteriori Error Estimates for Adaptive Finite Volume Methods , 2004, SIAM J. Numer. Anal..
[14] Qiang Du,et al. Convergence of the Lloyd Algorithm for Computing Centroidal Voronoi Tessellations , 2006, SIAM J. Numer. Anal..
[15] Peter Hansbo,et al. On advancing front mesh generation in three dimensions , 1995 .
[16] Qiang Du,et al. Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..
[17] Stanimire Tomov,et al. A Posteriori Error Estimates for Finite Volume Element Approximations of Convection–Diffusion–Reaction Equations , 2002 .
[18] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[19] Weidong Zhao,et al. Adaptive Finite Element Methods for Elliptic PDEs Based on Conforming Centroidal Voronoi-Delaunay Triangulations , 2006, SIAM J. Sci. Comput..
[20] Desheng Wang,et al. Tetrahedral mesh generation and optimization based on centroidal Voronoi tessellations , 2003 .
[21] H. Borouchaki,et al. Fast Delaunay triangulation in three dimensions , 1995 .
[22] S. Osher,et al. Solving variational problems and partial differential equations mapping into general target manifolds , 2004 .
[23] Paresh Parikh,et al. Generation of three-dimensional unstructured grids by the advancing-front method , 1988 .
[24] N. Sloane,et al. Some Doubly Exponential Sequences , 1973, The Fibonacci Quarterly.
[25] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[26] László Lovász,et al. Combinatorial problems and exercises (2. ed.) , 1993 .
[27] Ricardo H. Nochetto,et al. A finite element method for surface diffusion: the parametric case , 2005 .
[28] Qiang Du,et al. Finite Volume Methods on Spheres and Spherical Centroidal Voronoi Meshes , 2005, SIAM J. Numer. Anal..
[29] LongChen,et al. OPTIMAL DELAUNAY TRIANGULATIONS , 2004 .
[30] N. Weatherill,et al. Efficient three‐dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints , 1994 .
[31] Emmanuel Hebey,et al. Sobolev Spaces on Riemannian Manifolds , 1996 .
[32] T. Apel,et al. Clement-type interpolation on spherical domains—interpolation error estimates and application to a posteriori error estimation , 2005 .
[33] S. P. Lloyd,et al. Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.
[34] C. Jordan. Sur les assemblages de lignes. , 1869 .
[35] M. Yvinec,et al. Variational tetrahedral meshing , 2005, SIGGRAPH 2005.
[36] C. Taylor,et al. Predictive medicine: computational techniques in therapeutic decision-making. , 1999, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.
[37] F. Mémoli,et al. Implicit brain imaging , 2004, NeuroImage.
[38] Bjarne Knudsen,et al. Optimal Multiple Parsimony Alignment with Affine Gap Cost Using a Phylogenetic Tree , 2003, WABI.
[39] Frank Harary,et al. Distance in graphs , 1990 .
[40] Susanne C. Brenner,et al. Multigrid methods for the computation of singular solutions and stress intensity factors III: interface singularities , 2003 .
[41] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[42] P. L. Evans,et al. STEADY AND UNSTEADY SOLUTIONS FOR COATING FLOW ON A ROTATING HORIZONTAL CYLINDER: TWO-DIMENSIONAL THEORETICAL AND NUMERICAL MODELING , 2004 .
[43] Eberhard Triesch,et al. Superdominance order and distance of trees with bounded maximum degree , 2003, Discret. Appl. Math..
[44] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[45] R. Verfürth. A posteriori error estimators for the Stokes equations , 1989 .
[46] Jonathan Richard Shewchuk,et al. What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.
[47] Roger C. Entringer,et al. Distance in graphs , 1976 .
[48] M. Gunzburger,et al. Voronoi-based finite volume methods, optimal Voronoi meshes, and PDEs on the sphere ☆ , 2003 .
[49] I. Gutman,et al. Wiener Index of Trees: Theory and Applications , 2001 .
[50] T. Baker. Automatic mesh generation for complex three-dimensional regions using a constrained Delaunay triangulation , 1989, Engineering with Computers.
[51] Qiang Du,et al. Anisotropic Centroidal Voronoi Tessellations and Their Applications , 2005, SIAM J. Sci. Comput..
[52] Dieter Rautenbach,et al. Wiener index versus maximum degree in trees , 2002, Discret. Appl. Math..
[53] Rüdiger Verfürth,et al. A Posteriori Estimators for the Finite Volume Discretization of an Elliptic Problem , 2004, Numerical Algorithms.
[54] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[55] Qiang Du,et al. Grid generation and optimization based on centroidal Voronoi tessellations , 2002, Appl. Math. Comput..
[56] Ivo Babuška,et al. A Posteriori Error Analysis of Finite Element Solutions for One-Dimensional Problems , 1981 .
[57] Carsten Carstensen,et al. Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis , 2004, Numerische Mathematik.