Bengali VADER: A Sentiment Analysis Approach Using Modified VADER

Sentiment analysis is an essential field of natural language processing (NLP) that classifies the opinion expressed in a text according to its polarity (e.g., positive, negative or neutral). Bengali NLP research is lagging behind English NLP, where there are very few works on Bengali sentiment analysis. In this paper, we approach this issue by modifying a popular English tool VADER to support Bengali sentiment polarity identification. We have compiled a Bengali polarity lexicon from the English polarity lexicon of VADER. Furthermore, we have modified the functionalities of English VADER, so that it can directly classify Bengali text sentiments without the requirement of Bengali to English translation using tools such as Google Translator, MyMemory Translator, etc. Our experiments demonstrate that the modified Bengali VADER significantly improves the sentiment analysis result of Bengali text over the current model.

[1]  Rada Mihalcea,et al.  Learning Multilingual Subjective Language via Cross-Lingual Projections , 2007, ACL.

[2]  Verónica Pérez-Rosas,et al.  Learning Sentiment Lexicons in Spanish , 2012, LREC.

[3]  Bing Liu,et al.  Sentiment Analysis and Subjectivity , 2010, Handbook of Natural Language Processing.

[4]  Marshall S. Smith,et al.  The general inquirer: A computer approach to content analysis. , 1967 .

[5]  K. M. Azharul Hasan,et al.  Sentiment detection from Bangla text using contextual valency analysis , 2014, 2014 17th International Conference on Computer and Information Technology (ICCIT).

[6]  Hugo Liu,et al.  ConceptNet — A Practical Commonsense Reasoning Tool-Kit , 2004 .

[7]  Xabier Saralegi,et al.  Cross-Lingual Projections vs. Corpora Extracted Subjectivity Lexicons for Less-Resourced Languages , 2013, CICLing.

[8]  Sivaji Bandyopadhyay,et al.  Topic-Based Bengali Opinion Summarization , 2010, COLING.

[9]  Andrea Esuli,et al.  SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining , 2010, LREC.

[10]  Kathleen R. McKeown,et al.  Predicting the semantic orientation of adjectives , 1997 .

[11]  Wasifa Chowdhury,et al.  Performing sentiment analysis in Bangla microblog posts , 2014, 2014 International Conference on Informatics, Electronics & Vision (ICIEV).

[12]  James W. Pennebaker,et al.  Linguistic Inquiry and Word Count (LIWC2007) , 2007 .

[13]  Eric Gilbert,et al.  VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text , 2014, ICWSM.

[14]  Maite Taboada,et al.  Lexicon-Based Methods for Sentiment Analysis , 2011, CL.

[15]  Claire Cardie,et al.  OpinionFinder: A System for Subjectivity Analysis , 2005, HLT.

[16]  Soo-Min Kim,et al.  Determining the Sentiment of Opinions , 2004, COLING.

[17]  Xabier Saralegi,et al.  Polarity Lexicon Building: to what Extent Is the Manual Effort Worth? , 2016, LREC.

[18]  K. M. Azharul Hasan,et al.  Basic HPSG structure for Bangla grammar , 2012, 2012 15th International Conference on Computer and Information Technology (ICCIT).

[19]  M. de Rijke,et al.  UvA-DARE ( Digital Academic Repository ) Using WordNet to measure semantic orientations of adjectives , 2004 .

[20]  K. M. Azharul Hasan,et al.  A context free grammar and its predictive parser for bangla grammar recognition , 2010, 2010 13th International Conference on Computer and Information Technology (ICCIT).

[21]  K. M. Azharul Hasan,et al.  Recognizing Bangla Grammar using Predictive Parser , 2012, ArXiv.