Analysis of climate dynamics as a complex system: new insights from the development of advanced methodologies in information theory and complex networks.

Growing interest in climate prediction highlights the importance of achieving a better understanding of the underlying mechanisms behind climate variability. One of the dominant modes of interannual climate variability with worldwide weather and socioeconomic impacts is the El Niño Southern Oscillation (ENSO). Different methodologies have been used to improve the understanding of the ENSO dynamics, however research is still needed. During the last two decades the development and use of complex networks theory has led to important advances in the analysis of climate dynamics. Specifically, the analysis of climate networks, that is networks constructed using climate data, has provided valuable insights into different aspects of the climate dynamics that could not be captured using the classic methods frequently used in climatology. The goal of this thesis is to implement and develop new methodologies based on Information Theory quantifiers and Complex Networks for the analysis of climate variability at a variety of temporal scales. Initial work focussed on the use of well-known Information Theory quantifiers to study several dynamical systems including the logistic map and stochastic noises with different degrees of correlation. The Bandt & Pompe methodology, a symbolisation technique for time series analysis is used for the estimation of the probability distribution functions and missing ordinal patterns. Temporal changes in the dynamics of the Holocene ENSO proxy record of the Laguna Pallcacocha sedimentary data were also studied using entropy quantifiers, missing ordinal patterns, the Fisher Information measure, and the Shannon-Jensen Statistical Complexity. The analysis using these Information Theory Quantifiers

[1]  Osvaldo A. Rosso,et al.  Randomizing nonlinear maps via symbolic dynamics , 2008 .

[2]  Osvaldo A. Rosso,et al.  Generalized statistical complexity measures: Geometrical and analytical properties , 2006 .

[3]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  J. Sprott Chaos and time-series analysis , 2001 .

[5]  V Latora,et al.  Efficient behavior of small-world networks. , 2001, Physical review letters.

[6]  Dominik Endres,et al.  A new metric for probability distributions , 2003, IEEE Transactions on Information Theory.

[7]  P. Grassberger Toward a quantitative theory of self-generated complexity , 1986 .

[8]  A. Provenzale,et al.  Finite correlation dimension for stochastic systems with power-law spectra , 1989 .

[9]  A. M. Kowalski,et al.  Fractional Brownian motion, fractional Gaussian noise, and Tsallis permutation entropy , 2008 .

[10]  A. Shiryayev New Metric Invariant of Transitive Dynamical Systems and Automorphisms of Lebesgue Spaces , 1993 .

[11]  Mark A. Cane,et al.  The evolution of El Nino, past and future , 2005 .

[12]  T. McMahon,et al.  El Nino/Southern Oscillation and Australian rainfall, streamflow and drought : Links and potential for forecasting , 1998 .

[13]  Michael J. W. Hall,et al.  Quantum Properties of Classical Fisher Information , 1999, quant-ph/9912055.

[14]  Hilda A. Larrondo,et al.  Generalized Statistical Complexity Measure , 2010, Int. J. Bifurc. Chaos.

[15]  M. G. Kendall,et al.  A Study in the Analysis of Stationary Time-Series. , 1955 .

[16]  J. Hollunder,et al.  Information theoretic description of networks , 2007 .

[17]  Cristina Masoller,et al.  Detecting and quantifying stochastic and coherence resonances via information-theory complexity measurements. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Konrad A Hughen,et al.  Climate and the Collapse of Maya Civilization , 2003, Science.

[19]  Kaspar Anton Schindler,et al.  Forbidden ordinal patterns of periictal intracranial EEG indicate deterministic dynamics in human epileptic seizures , 2011, Epilepsia.

[20]  Peter Grassberger,et al.  How to measure self-generated complexity , 1986 .

[21]  I. Grosse,et al.  Analysis of symbolic sequences using the Jensen-Shannon divergence. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  O. A. Rosso,et al.  EEG analysis using wavelet-based information tools , 2006, Journal of Neuroscience Methods.

[23]  Thomas M. Smith,et al.  Improvements to NOAA’s Historical Merged Land–Ocean Surface Temperature Analysis (1880–2006) , 2008 .

[24]  Mokshay M. Madiman,et al.  Fisher Information, Compound Poisson Approximation, and the Poisson Channel , 2007, 2007 IEEE International Symposium on Information Theory.

[25]  Chonghui Guo,et al.  Entropy optimization of scale-free networks’ robustness to random failures , 2005, cond-mat/0506725.

[26]  M. Mcphaden Evolution of the 2006–2007 El Niño: the role of intraseasonal to interannual time scale dynamics , 2008 .

[27]  O. Rosso,et al.  Shakespeare and other English Renaissance authors as characterized by Information Theory complexity quantifiers , 2009 .

[28]  F. Jin,et al.  Niño indices for two types of ENSO , 2011 .

[29]  Lai,et al.  Validity of threshold-crossing analysis of symbolic dynamics from chaotic time series , 2000, Physical review letters.

[30]  P. Mayewski,et al.  Holocene climate variability , 2004, Quaternary Research.

[31]  S. Havlin,et al.  Climate networks around the globe are significantly affected by El Niño. , 2008, Physical review letters.

[32]  Charles F. Manski,et al.  Analog estimation methods in econometrics , 1988 .

[33]  W. Wootters Statistical distance and Hilbert space , 1981 .

[34]  A. Tsonis,et al.  Topology and predictability of El Niño and La Niña networks. , 2008, Physical review letters.

[35]  J. C. Angulo,et al.  Fisher-Shannon analysis of ionization processes and isoelectronic series , 2007 .

[36]  Paul Erdös,et al.  On random graphs, I , 1959 .

[37]  Osvaldo A. Rosso,et al.  Missing ordinal patterns in correlated noises , 2010 .

[38]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[39]  J. Kurths,et al.  An attractor in a solar time series , 1987 .

[40]  Massimiliano Zanin,et al.  Permutation Entropy and Its Main Biomedical and Econophysics Applications: A Review , 2012, Entropy.

[41]  K. Ferentinos,et al.  Discrete approximations to the Csiszár, Renyi, and Fisher measures of information , 1986 .

[42]  Aslak Grinsted,et al.  Nonlinear Processes in Geophysics Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series , 2022 .

[43]  Adam H. Monahan,et al.  Nonlinear Principal Component Analysis: Tropical Indo–Pacific Sea Surface Temperature and Sea Level Pressure , 2001 .

[44]  Ercan Kahya,et al.  U.S. streamflow patterns in relation to the El Niño/Southern Oscillation , 1993 .

[45]  Chester F. Ropelewski,et al.  Surface Temperature Patterns Associated with the Southern Oscillation , 1992 .

[46]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .

[47]  Luciano Zunino,et al.  Forbidden patterns, permutation entropy and stock market inefficiency , 2009 .

[48]  Chstoph Bandt,et al.  Order Patterns in Time Series , 2007 .

[49]  L. D. Costa,et al.  Community structure and dynamics in climate networks , 2011 .

[50]  Zhenhu Liang,et al.  Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia , 2010, Journal of neural engineering.

[51]  Niels Wessel,et al.  Classifying cardiac biosignals using ordinal pattern statistics and symbolic dynamics , 2012, Comput. Biol. Medicine.

[52]  Miguel A. F. Sanjuán,et al.  Combinatorial detection of determinism in noisy time series , 2008 .

[53]  Mehmet Emre Çek,et al.  Analysis of observed chaotic data , 2004 .

[54]  M Garavaglia,et al.  Extracting features of Gaussian self-similar stochastic processes via the Bandt-Pompe approach. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  K. Butzer,et al.  Early hydraulic civilization in Egypt , 1976 .

[56]  Carl S. McTague,et al.  The organization of intrinsic computation: complexity-entropy diagrams and the diversity of natural information processing. , 2008, Chaos.

[57]  Jean-François Bercher,et al.  Analysis of signals in the Fisher–Shannon information plane , 2003 .

[58]  Massimiliano Zanin,et al.  Forbidden patterns in financial time series. , 2007, Chaos.

[59]  José Amigó,et al.  Permutation Complexity in Dynamical Systems , 2010 .

[60]  Paul J. Roebber,et al.  The architecture of the climate network , 2004 .

[61]  Juan Carlos Angulo,et al.  Fisher-Shannon plane and statistical complexity of atoms , 2008 .

[62]  Nitesh V. Chawla,et al.  Multivariate and multiscale dependence in the global climate system revealed through complex networks , 2012, Climate Dynamics.

[63]  M. Krom,et al.  Contribution : Nile Flow Failure at the End of the Old Kingdom , Egypt : Strontium Isotopic and Petrologic Evidence , 2003 .

[64]  Srinivasan Parthasarathy,et al.  Anomaly detection and spatio-temporal analysis of global climate system , 2009, SensorKDD '09.

[65]  S. Power,et al.  Variability and decline in the number of severe tropical cyclones making land-fall over eastern Australia since the late nineteenth century , 2011 .

[66]  Ricardo López-Ruiz,et al.  A Statistical Measure of Complexity , 1995, ArXiv.

[67]  Osvaldo A. Rosso,et al.  ENTROPIC NON-TRIVIALITY, THE CLASSICAL LIMIT AND GEOMETRY-DYNAMICS CORRELATIONS , 2005 .

[68]  C. Finney,et al.  A review of symbolic analysis of experimental data , 2003 .

[69]  J. Kurths,et al.  A Comparative Classification of Complexity Measures , 1994 .

[70]  Cristina Masoller,et al.  Detecting and quantifying temporal correlations in stochastic resonance via information theory measures , 2009 .

[71]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[72]  A. Plastino,et al.  Permutation entropy of fractional Brownian motion and fractional Gaussian noise , 2008 .

[73]  Osvaldo A. Rosso,et al.  Intensive statistical complexity measure of pseudorandom number generators , 2005 .

[74]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[75]  Osvaldo A. Rosso,et al.  Statistical complexity and disequilibrium , 2003 .

[76]  Osvaldo A. Rosso,et al.  Intensive entropic non-triviality measure , 2004 .

[77]  I. Vajda,et al.  A new class of metric divergences on probability spaces and its applicability in statistics , 2003 .

[78]  Leandro Pardo,et al.  Discretization problems on generalized entropies and R-divergences , 1994, Kybernetika.

[79]  Nitesh V. Chawla,et al.  An exploration of climate data using complex networks , 2009, SensorKDD '09.

[80]  S. Havlin,et al.  Pattern of climate network blinking links follows El Niño events , 2008 .

[81]  W. Markesbery,et al.  Incipient Alzheimer's disease: Microarray correlation analyses reveal major transcriptional and tumor suppressor responses , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[82]  M Anghel,et al.  Estimation of entropies and dimensions by nonlinear symbolic time series analysis. , 2002, Chaos.

[83]  J. A. Stewart,et al.  Nonlinear Time Series Analysis , 2015 .

[84]  Osvaldo A. Rosso,et al.  Brain electrical activity analysis using wavelet-based informational tools (II): Tsallis non-extensivity and complexity measures , 2003 .

[85]  Osvaldo A. Rosso,et al.  Random number generators and causality , 2006 .

[86]  Gaoxiang Ouyang,et al.  Deterministic dynamics of neural activity during absence seizures in rats. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[87]  Potsdam,et al.  Complex networks in climate dynamics. Comparing linear and nonlinear network construction methods , 2009, 0907.4359.

[88]  Young,et al.  Inferring statistical complexity. , 1989, Physical review letters.

[89]  Joaquín Hortal,et al.  Climate Change, Humans, and the Extinction of the Woolly Mammoth , 2008, PLoS biology.

[90]  Michael J. McPhaden,et al.  Increasing intensity of El Niño in the central-equatorial Pacific: INCREASING INTENSITY OF EL NIÑO , 2010 .

[91]  Geli Wang,et al.  On the Role of Atmospheric Teleconnections in Climate , 2008 .

[92]  D. Verdon‐Kidd,et al.  Climatic drivers of Victorian streamflow: Is ENSO the dominant influence? , 2009 .

[93]  M. England,et al.  El Niño Modoki Impacts on Australian Rainfall , 2009 .

[94]  Osvaldo A. Rosso,et al.  Entropy and statistical complexity in brain activity , 2005 .

[95]  Geli Wang,et al.  On the variability of ENSO at millennial timescales , 2008 .

[96]  Olbrich,et al.  Chaos or noise: difficulties of a distinction , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[97]  Alejandra Figliola,et al.  Entropy analysis of the dynamics of El Niño/Southern Oscillation during the Holocene , 2010 .

[98]  O. Rosso,et al.  Uncovering Molecular Biomarkers That Correlate Cognitive Decline with the Changes of Hippocampus' Gene Expression Profiles in Alzheimer's Disease , 2010, PloS one.

[99]  Mathieu Sinn,et al.  Ordinal analysis of time series , 2005 .

[100]  Eckehard Olbrich,et al.  Coarse grained dynamical entropies: Investigation of high-entropic dynamical systems , 2000 .

[101]  S. Resnick A Probability Path , 1999 .

[102]  Jürgen Kurths,et al.  Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks , 2012, Climate Dynamics.

[103]  Claudio R. Mirasso,et al.  Encryption test of pseudo-aleatory messages embedded on chaotic laser signals: An information theory approach , 2008 .

[104]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[105]  O A Rosso,et al.  Distinguishing noise from chaos. , 2007, Physical review letters.

[106]  N. Nicholls Impact of the southern oscillation on australian crops , 1985 .

[107]  O A Rosso,et al.  Quantifiers for randomness of chaotic pseudo-random number generators , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[108]  Osvaldo A. Rosso,et al.  Bandt–Pompe approach to the classical-quantum transition , 2007 .

[109]  Audrey L. Mayer,et al.  Fisher Information and dynamic regime changes in ecological systems , 2006 .

[110]  Cynthia Rosenzweig,et al.  ENSO, seasonal rainfall patterns and simulated maize yield variability in Zimbabwe , 1998 .

[111]  Paul J. Roebber,et al.  What Do Networks Have to Do with Climate , 2006 .

[112]  Plastino Symmetries of the Fokker-Planck equation and the Fisher-Frieden arrow of time. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[113]  D. T. Kaplan,et al.  Direct test for determinism in a time series. , 1992, Physical review letters.

[114]  Massimiliano Zanin,et al.  Commodity predictability analysis with a permutation information theory approach , 2011 .

[115]  X Calbet,et al.  Tendency towards maximum complexity in a nonequilibrium isolated system. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[116]  Petter Holme,et al.  Network Properties of Complex Human Disease Genes Identified through Genome-Wide Association Studies , 2009, PloS one.

[117]  Cristina Masoller,et al.  Inferring long memory processes in the climate network via ordinal pattern analysis. , 2011, Chaos.

[118]  Mark B. Abbott,et al.  An ;15,000-Year Record of El Nino—Driven Alluviation in Southwestern Ecuador , 1999 .

[119]  A. Plastino,et al.  LMC-complexity and various chaotic regimes , 2009 .

[120]  I. Percival,et al.  A spectral entropy method for distinguishing regular and irregular motion of Hamiltonian systems , 1979 .

[121]  M. Mcphaden El Niño and La Niña : Causes and Global Consequences , 2001 .

[122]  G. Denton,et al.  Holocene Climatic Variations—Their Pattern and Possible Cause , 1973, Quaternary Research.

[123]  J. S. Dehesa,et al.  The Fisher-Shannon information plane, an electron correlation tool. , 2004, The Journal of chemical physics.

[124]  Thomas Manke,et al.  Robustness and network evolution--an entropic principle , 2005 .

[125]  Ljupco Kocarev,et al.  Order patterns and chaos , 2006 .

[126]  Michael I. Miller,et al.  Changes in hippocampal volume and shape across time distinguish dementia of the Alzheimer type from healthy aging☆ , 2003, NeuroImage.

[127]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[128]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[129]  Martin T. Dove Structure and Dynamics , 2003 .

[130]  Miguel A. F. Sanjuán,et al.  True and false forbidden patterns in deterministic and random dynamics , 2007 .

[131]  Stamatis Cambanis,et al.  Innovations and Wold decompositions of stable sequences , 1988 .

[132]  P. Landsberg,et al.  Simple measure for complexity , 1999 .

[133]  B. Pompe,et al.  Permutation entropy: a natural complexity measure for time series. , 2002, Physical review letters.

[134]  M. Newman,et al.  Renormalization Group Analysis of the Small-World Network Model , 1999, cond-mat/9903357.

[135]  David M. Anderson,et al.  Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch , 2002, Nature.

[136]  C. Stam,et al.  Small-world networks and functional connectivity in Alzheimer's disease. , 2006, Cerebral cortex.

[137]  Joshua D. Reiss,et al.  Construction of symbolic dynamics from experimental time series , 1999 .

[138]  Adam H. Monahan,et al.  The Spatial and Temporal Structure of ENSO Nonlinearity , 2004 .

[139]  George Sugihara,et al.  Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series , 1990, Nature.

[140]  Osvaldo A. Rosso,et al.  Causality and the entropy–complexity plane: Robustness and missing ordinal patterns , 2011, 1105.4550.

[141]  D. Maraun What Can We Learn from Climate Data? Methods for Fluctuation, Time/Scale and Phase Analysis , 2006 .

[142]  B. Roy Frieden Physics from Fisher Information: What is Fisher information? , 1998 .

[143]  Osvaldo A. Rosso,et al.  Characterization of time dynamical evolution of electroencephalographic epileptic records , 2002 .